%PDF- %PDF-
Direktori : /opt/alt/python37/lib/python3.7/site-packages/attr/ |
Current File : //opt/alt/python37/lib/python3.7/site-packages/attr/_funcs.py |
from __future__ import absolute_import, division, print_function import copy from ._compat import iteritems from ._make import NOTHING, _obj_setattr, fields from .exceptions import AttrsAttributeNotFoundError def asdict( inst, recurse=True, filter=None, dict_factory=dict, retain_collection_types=False, value_serializer=None, ): """ Return the ``attrs`` attribute values of *inst* as a dict. Optionally recurse into other ``attrs``-decorated classes. :param inst: Instance of an ``attrs``-decorated class. :param bool recurse: Recurse into classes that are also ``attrs``-decorated. :param callable filter: A callable whose return code determines whether an attribute or element is included (``True``) or dropped (``False``). Is called with the `attr.Attribute` as the first argument and the value as the second argument. :param callable dict_factory: A callable to produce dictionaries from. For example, to produce ordered dictionaries instead of normal Python dictionaries, pass in ``collections.OrderedDict``. :param bool retain_collection_types: Do not convert to ``list`` when encountering an attribute whose type is ``tuple`` or ``set``. Only meaningful if ``recurse`` is ``True``. :param Optional[callable] value_serializer: A hook that is called for every attribute or dict key/value. It receives the current instance, field and value and must return the (updated) value. The hook is run *after* the optional *filter* has been applied. :rtype: return type of *dict_factory* :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. .. versionadded:: 16.0.0 *dict_factory* .. versionadded:: 16.1.0 *retain_collection_types* .. versionadded:: 20.3.0 *value_serializer* """ attrs = fields(inst.__class__) rv = dict_factory() for a in attrs: v = getattr(inst, a.name) if filter is not None and not filter(a, v): continue if value_serializer is not None: v = value_serializer(inst, a, v) if recurse is True: if has(v.__class__): rv[a.name] = asdict( v, True, filter, dict_factory, retain_collection_types, value_serializer, ) elif isinstance(v, (tuple, list, set, frozenset)): cf = v.__class__ if retain_collection_types is True else list rv[a.name] = cf( [ _asdict_anything( i, filter, dict_factory, retain_collection_types, value_serializer, ) for i in v ] ) elif isinstance(v, dict): df = dict_factory rv[a.name] = df( ( _asdict_anything( kk, filter, df, retain_collection_types, value_serializer, ), _asdict_anything( vv, filter, df, retain_collection_types, value_serializer, ), ) for kk, vv in iteritems(v) ) else: rv[a.name] = v else: rv[a.name] = v return rv def _asdict_anything( val, filter, dict_factory, retain_collection_types, value_serializer, ): """ ``asdict`` only works on attrs instances, this works on anything. """ if getattr(val.__class__, "__attrs_attrs__", None) is not None: # Attrs class. rv = asdict( val, True, filter, dict_factory, retain_collection_types, value_serializer, ) elif isinstance(val, (tuple, list, set, frozenset)): cf = val.__class__ if retain_collection_types is True else list rv = cf( [ _asdict_anything( i, filter, dict_factory, retain_collection_types, value_serializer, ) for i in val ] ) elif isinstance(val, dict): df = dict_factory rv = df( ( _asdict_anything( kk, filter, df, retain_collection_types, value_serializer ), _asdict_anything( vv, filter, df, retain_collection_types, value_serializer ), ) for kk, vv in iteritems(val) ) else: rv = val if value_serializer is not None: rv = value_serializer(None, None, rv) return rv def astuple( inst, recurse=True, filter=None, tuple_factory=tuple, retain_collection_types=False, ): """ Return the ``attrs`` attribute values of *inst* as a tuple. Optionally recurse into other ``attrs``-decorated classes. :param inst: Instance of an ``attrs``-decorated class. :param bool recurse: Recurse into classes that are also ``attrs``-decorated. :param callable filter: A callable whose return code determines whether an attribute or element is included (``True``) or dropped (``False``). Is called with the `attr.Attribute` as the first argument and the value as the second argument. :param callable tuple_factory: A callable to produce tuples from. For example, to produce lists instead of tuples. :param bool retain_collection_types: Do not convert to ``list`` or ``dict`` when encountering an attribute which type is ``tuple``, ``dict`` or ``set``. Only meaningful if ``recurse`` is ``True``. :rtype: return type of *tuple_factory* :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. .. versionadded:: 16.2.0 """ attrs = fields(inst.__class__) rv = [] retain = retain_collection_types # Very long. :/ for a in attrs: v = getattr(inst, a.name) if filter is not None and not filter(a, v): continue if recurse is True: if has(v.__class__): rv.append( astuple( v, recurse=True, filter=filter, tuple_factory=tuple_factory, retain_collection_types=retain, ) ) elif isinstance(v, (tuple, list, set, frozenset)): cf = v.__class__ if retain is True else list rv.append( cf( [ astuple( j, recurse=True, filter=filter, tuple_factory=tuple_factory, retain_collection_types=retain, ) if has(j.__class__) else j for j in v ] ) ) elif isinstance(v, dict): df = v.__class__ if retain is True else dict rv.append( df( ( astuple( kk, tuple_factory=tuple_factory, retain_collection_types=retain, ) if has(kk.__class__) else kk, astuple( vv, tuple_factory=tuple_factory, retain_collection_types=retain, ) if has(vv.__class__) else vv, ) for kk, vv in iteritems(v) ) ) else: rv.append(v) else: rv.append(v) return rv if tuple_factory is list else tuple_factory(rv) def has(cls): """ Check whether *cls* is a class with ``attrs`` attributes. :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :rtype: bool """ return getattr(cls, "__attrs_attrs__", None) is not None def assoc(inst, **changes): """ Copy *inst* and apply *changes*. :param inst: Instance of a class with ``attrs`` attributes. :param changes: Keyword changes in the new copy. :return: A copy of inst with *changes* incorporated. :raise attr.exceptions.AttrsAttributeNotFoundError: If *attr_name* couldn't be found on *cls*. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. .. deprecated:: 17.1.0 Use `evolve` instead. """ import warnings warnings.warn( "assoc is deprecated and will be removed after 2018/01.", DeprecationWarning, stacklevel=2, ) new = copy.copy(inst) attrs = fields(inst.__class__) for k, v in iteritems(changes): a = getattr(attrs, k, NOTHING) if a is NOTHING: raise AttrsAttributeNotFoundError( "{k} is not an attrs attribute on {cl}.".format( k=k, cl=new.__class__ ) ) _obj_setattr(new, k, v) return new def evolve(inst, **changes): """ Create a new instance, based on *inst* with *changes* applied. :param inst: Instance of a class with ``attrs`` attributes. :param changes: Keyword changes in the new copy. :return: A copy of inst with *changes* incorporated. :raise TypeError: If *attr_name* couldn't be found in the class ``__init__``. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. .. versionadded:: 17.1.0 """ cls = inst.__class__ attrs = fields(cls) for a in attrs: if not a.init: continue attr_name = a.name # To deal with private attributes. init_name = attr_name if attr_name[0] != "_" else attr_name[1:] if init_name not in changes: changes[init_name] = getattr(inst, attr_name) return cls(**changes) def resolve_types(cls, globalns=None, localns=None, attribs=None): """ Resolve any strings and forward annotations in type annotations. This is only required if you need concrete types in `Attribute`'s *type* field. In other words, you don't need to resolve your types if you only use them for static type checking. With no arguments, names will be looked up in the module in which the class was created. If this is not what you want, e.g. if the name only exists inside a method, you may pass *globalns* or *localns* to specify other dictionaries in which to look up these names. See the docs of `typing.get_type_hints` for more details. :param type cls: Class to resolve. :param Optional[dict] globalns: Dictionary containing global variables. :param Optional[dict] localns: Dictionary containing local variables. :param Optional[list] attribs: List of attribs for the given class. This is necessary when calling from inside a ``field_transformer`` since *cls* is not an ``attrs`` class yet. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class and you didn't pass any attribs. :raise NameError: If types cannot be resolved because of missing variables. :returns: *cls* so you can use this function also as a class decorator. Please note that you have to apply it **after** `attr.s`. That means the decorator has to come in the line **before** `attr.s`. .. versionadded:: 20.1.0 .. versionadded:: 21.1.0 *attribs* """ try: # Since calling get_type_hints is expensive we cache whether we've # done it already. cls.__attrs_types_resolved__ except AttributeError: import typing hints = typing.get_type_hints(cls, globalns=globalns, localns=localns) for field in fields(cls) if attribs is None else attribs: if field.name in hints: # Since fields have been frozen we must work around it. _obj_setattr(field, "type", hints[field.name]) cls.__attrs_types_resolved__ = True # Return the class so you can use it as a decorator too. return cls