%PDF- %PDF-
Direktori : /opt/alt/python37/lib64/python3.7/site-packages/numpy/core/tests/ |
Current File : //opt/alt/python37/lib64/python3.7/site-packages/numpy/core/tests/test_scalarmath.py |
from __future__ import division, absolute_import, print_function import sys import warnings import itertools import operator import numpy as np from numpy.testing.utils import _gen_alignment_data from numpy.testing import ( TestCase, run_module_suite, assert_, assert_equal, assert_raises, assert_almost_equal, assert_allclose, assert_array_equal, IS_PYPY, suppress_warnings ) types = [np.bool_, np.byte, np.ubyte, np.short, np.ushort, np.intc, np.uintc, np.int_, np.uint, np.longlong, np.ulonglong, np.single, np.double, np.longdouble, np.csingle, np.cdouble, np.clongdouble] floating_types = np.floating.__subclasses__() # This compares scalarmath against ufuncs. class TestTypes(TestCase): def test_types(self, level=1): for atype in types: a = atype(1) assert_(a == 1, "error with %r: got %r" % (atype, a)) def test_type_add(self, level=1): # list of types for k, atype in enumerate(types): a_scalar = atype(3) a_array = np.array([3], dtype=atype) for l, btype in enumerate(types): b_scalar = btype(1) b_array = np.array([1], dtype=btype) c_scalar = a_scalar + b_scalar c_array = a_array + b_array # It was comparing the type numbers, but the new ufunc # function-finding mechanism finds the lowest function # to which both inputs can be cast - which produces 'l' # when you do 'q' + 'b'. The old function finding mechanism # skipped ahead based on the first argument, but that # does not produce properly symmetric results... assert_equal(c_scalar.dtype, c_array.dtype, "error with types (%d/'%c' + %d/'%c')" % (k, np.dtype(atype).char, l, np.dtype(btype).char)) def test_type_create(self, level=1): for k, atype in enumerate(types): a = np.array([1, 2, 3], atype) b = atype([1, 2, 3]) assert_equal(a, b) def test_leak(self): # test leak of scalar objects # a leak would show up in valgrind as still-reachable of ~2.6MB for i in range(200000): np.add(1, 1) class TestBaseMath(TestCase): def test_blocked(self): # test alignments offsets for simd instructions # alignments for vz + 2 * (vs - 1) + 1 for dt, sz in [(np.float32, 11), (np.float64, 7), (np.int32, 11)]: for out, inp1, inp2, msg in _gen_alignment_data(dtype=dt, type='binary', max_size=sz): exp1 = np.ones_like(inp1) inp1[...] = np.ones_like(inp1) inp2[...] = np.zeros_like(inp2) assert_almost_equal(np.add(inp1, inp2), exp1, err_msg=msg) assert_almost_equal(np.add(inp1, 2), exp1 + 2, err_msg=msg) assert_almost_equal(np.add(1, inp2), exp1, err_msg=msg) np.add(inp1, inp2, out=out) assert_almost_equal(out, exp1, err_msg=msg) inp2[...] += np.arange(inp2.size, dtype=dt) + 1 assert_almost_equal(np.square(inp2), np.multiply(inp2, inp2), err_msg=msg) # skip true divide for ints if dt != np.int32 or (sys.version_info.major < 3 and not sys.py3kwarning): assert_almost_equal(np.reciprocal(inp2), np.divide(1, inp2), err_msg=msg) inp1[...] = np.ones_like(inp1) np.add(inp1, 2, out=out) assert_almost_equal(out, exp1 + 2, err_msg=msg) inp2[...] = np.ones_like(inp2) np.add(2, inp2, out=out) assert_almost_equal(out, exp1 + 2, err_msg=msg) def test_lower_align(self): # check data that is not aligned to element size # i.e doubles are aligned to 4 bytes on i386 d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64) o = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64) assert_almost_equal(d + d, d * 2) np.add(d, d, out=o) np.add(np.ones_like(d), d, out=o) np.add(d, np.ones_like(d), out=o) np.add(np.ones_like(d), d) np.add(d, np.ones_like(d)) class TestPower(TestCase): def test_small_types(self): for t in [np.int8, np.int16, np.float16]: a = t(3) b = a ** 4 assert_(b == 81, "error with %r: got %r" % (t, b)) def test_large_types(self): for t in [np.int32, np.int64, np.float32, np.float64, np.longdouble]: a = t(51) b = a ** 4 msg = "error with %r: got %r" % (t, b) if np.issubdtype(t, np.integer): assert_(b == 6765201, msg) else: assert_almost_equal(b, 6765201, err_msg=msg) def test_integers_to_negative_integer_power(self): # Note that the combination of uint64 with a signed integer # has common type np.float. The other combinations should all # raise a ValueError for integer ** negative integer. exp = [np.array(-1, dt)[()] for dt in 'bhilq'] # 1 ** -1 possible special case base = [np.array(1, dt)[()] for dt in 'bhilqBHILQ'] for i1, i2 in itertools.product(base, exp): if i1.dtype.name != 'uint64': assert_raises(ValueError, operator.pow, i1, i2) else: res = operator.pow(i1, i2) assert_(res.dtype.type is np.float64) assert_almost_equal(res, 1.) # -1 ** -1 possible special case base = [np.array(-1, dt)[()] for dt in 'bhilq'] for i1, i2 in itertools.product(base, exp): if i1.dtype.name != 'uint64': assert_raises(ValueError, operator.pow, i1, i2) else: res = operator.pow(i1, i2) assert_(res.dtype.type is np.float64) assert_almost_equal(res, -1.) # 2 ** -1 perhaps generic base = [np.array(2, dt)[()] for dt in 'bhilqBHILQ'] for i1, i2 in itertools.product(base, exp): if i1.dtype.name != 'uint64': assert_raises(ValueError, operator.pow, i1, i2) else: res = operator.pow(i1, i2) assert_(res.dtype.type is np.float64) assert_almost_equal(res, .5) def test_mixed_types(self): typelist = [np.int8, np.int16, np.float16, np.float32, np.float64, np.int8, np.int16, np.int32, np.int64] for t1 in typelist: for t2 in typelist: a = t1(3) b = t2(2) result = a**b msg = ("error with %r and %r:" "got %r, expected %r") % (t1, t2, result, 9) if np.issubdtype(np.dtype(result), np.integer): assert_(result == 9, msg) else: assert_almost_equal(result, 9, err_msg=msg) def test_modular_power(self): # modular power is not implemented, so ensure it errors a = 5 b = 4 c = 10 expected = pow(a, b, c) for t in (np.int32, np.float32, np.complex64): # note that 3-operand power only dispatches on the first argument assert_raises(TypeError, operator.pow, t(a), b, c) assert_raises(TypeError, operator.pow, np.array(t(a)), b, c) def floordiv_and_mod(x, y): return (x // y, x % y) def _signs(dt): if dt in np.typecodes['UnsignedInteger']: return (+1,) else: return (+1, -1) class TestModulus(TestCase): def test_modulus_basic(self): dt = np.typecodes['AllInteger'] + np.typecodes['Float'] for op in [floordiv_and_mod, divmod]: for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product(_signs(dt1), _signs(dt2)): fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (op.__name__, dt1, dt2, sg1, sg2) a = np.array(sg1*71, dtype=dt1)[()] b = np.array(sg2*19, dtype=dt2)[()] div, rem = op(a, b) assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg) def test_float_modulus_exact(self): # test that float results are exact for small integers. This also # holds for the same integers scaled by powers of two. nlst = list(range(-127, 0)) plst = list(range(1, 128)) dividend = nlst + [0] + plst divisor = nlst + plst arg = list(itertools.product(dividend, divisor)) tgt = list(divmod(*t) for t in arg) a, b = np.array(arg, dtype=int).T # convert exact integer results from Python to float so that # signed zero can be used, it is checked. tgtdiv, tgtrem = np.array(tgt, dtype=float).T tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv) tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem) for op in [floordiv_and_mod, divmod]: for dt in np.typecodes['Float']: msg = 'op: %s, dtype: %s' % (op.__name__, dt) fa = a.astype(dt) fb = b.astype(dt) # use list comprehension so a_ and b_ are scalars div, rem = zip(*[op(a_, b_) for a_, b_ in zip(fa, fb)]) assert_equal(div, tgtdiv, err_msg=msg) assert_equal(rem, tgtrem, err_msg=msg) def test_float_modulus_roundoff(self): # gh-6127 dt = np.typecodes['Float'] for op in [floordiv_and_mod, divmod]: for dt1, dt2 in itertools.product(dt, dt): for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s' msg = fmt % (op.__name__, dt1, dt2, sg1, sg2) a = np.array(sg1*78*6e-8, dtype=dt1)[()] b = np.array(sg2*6e-8, dtype=dt2)[()] div, rem = op(a, b) # Equal assertion should hold when fmod is used assert_equal(div*b + rem, a, err_msg=msg) if sg2 == -1: assert_(b < rem <= 0, msg) else: assert_(b > rem >= 0, msg) def test_float_modulus_corner_cases(self): # Check remainder magnitude. for dt in np.typecodes['Float']: b = np.array(1.0, dtype=dt) a = np.nextafter(np.array(0.0, dtype=dt), -b) rem = operator.mod(a, b) assert_(rem <= b, 'dt: %s' % dt) rem = operator.mod(-a, -b) assert_(rem >= -b, 'dt: %s' % dt) # Check nans, inf with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in remainder") for dt in np.typecodes['Float']: fone = np.array(1.0, dtype=dt) fzer = np.array(0.0, dtype=dt) finf = np.array(np.inf, dtype=dt) fnan = np.array(np.nan, dtype=dt) rem = operator.mod(fone, fzer) assert_(np.isnan(rem), 'dt: %s' % dt) # MSVC 2008 returns NaN here, so disable the check. #rem = operator.mod(fone, finf) #assert_(rem == fone, 'dt: %s' % dt) rem = operator.mod(fone, fnan) assert_(np.isnan(rem), 'dt: %s' % dt) rem = operator.mod(finf, fone) assert_(np.isnan(rem), 'dt: %s' % dt) class TestComplexDivision(TestCase): def test_zero_division(self): with np.errstate(all="ignore"): for t in [np.complex64, np.complex128]: a = t(0.0) b = t(1.0) assert_(np.isinf(b/a)) b = t(complex(np.inf, np.inf)) assert_(np.isinf(b/a)) b = t(complex(np.inf, np.nan)) assert_(np.isinf(b/a)) b = t(complex(np.nan, np.inf)) assert_(np.isinf(b/a)) b = t(complex(np.nan, np.nan)) assert_(np.isnan(b/a)) b = t(0.) assert_(np.isnan(b/a)) def test_signed_zeros(self): with np.errstate(all="ignore"): for t in [np.complex64, np.complex128]: # tupled (numerator, denominator, expected) # for testing as expected == numerator/denominator data = ( (( 0.0,-1.0), ( 0.0, 1.0), (-1.0,-0.0)), (( 0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)), (( 0.0,-1.0), (-0.0,-1.0), ( 1.0, 0.0)), (( 0.0,-1.0), (-0.0, 1.0), (-1.0, 0.0)), (( 0.0, 1.0), ( 0.0,-1.0), (-1.0, 0.0)), (( 0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)), ((-0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)), ((-0.0, 1.0), ( 0.0,-1.0), (-1.0,-0.0)) ) for cases in data: n = cases[0] d = cases[1] ex = cases[2] result = t(complex(n[0], n[1])) / t(complex(d[0], d[1])) # check real and imag parts separately to avoid comparison # in array context, which does not account for signed zeros assert_equal(result.real, ex[0]) assert_equal(result.imag, ex[1]) def test_branches(self): with np.errstate(all="ignore"): for t in [np.complex64, np.complex128]: # tupled (numerator, denominator, expected) # for testing as expected == numerator/denominator data = list() # trigger branch: real(fabs(denom)) > imag(fabs(denom)) # followed by else condition as neither are == 0 data.append((( 2.0, 1.0), ( 2.0, 1.0), (1.0, 0.0))) # trigger branch: real(fabs(denom)) > imag(fabs(denom)) # followed by if condition as both are == 0 # is performed in test_zero_division(), so this is skipped # trigger else if branch: real(fabs(denom)) < imag(fabs(denom)) data.append((( 1.0, 2.0), ( 1.0, 2.0), (1.0, 0.0))) for cases in data: n = cases[0] d = cases[1] ex = cases[2] result = t(complex(n[0], n[1])) / t(complex(d[0], d[1])) # check real and imag parts separately to avoid comparison # in array context, which does not account for signed zeros assert_equal(result.real, ex[0]) assert_equal(result.imag, ex[1]) class TestConversion(TestCase): def test_int_from_long(self): l = [1e6, 1e12, 1e18, -1e6, -1e12, -1e18] li = [10**6, 10**12, 10**18, -10**6, -10**12, -10**18] for T in [None, np.float64, np.int64]: a = np.array(l, dtype=T) assert_equal([int(_m) for _m in a], li) a = np.array(l[:3], dtype=np.uint64) assert_equal([int(_m) for _m in a], li[:3]) def test_iinfo_long_values(self): for code in 'bBhH': res = np.array(np.iinfo(code).max + 1, dtype=code) tgt = np.iinfo(code).min assert_(res == tgt) for code in np.typecodes['AllInteger']: res = np.array(np.iinfo(code).max, dtype=code) tgt = np.iinfo(code).max assert_(res == tgt) for code in np.typecodes['AllInteger']: res = np.typeDict[code](np.iinfo(code).max) tgt = np.iinfo(code).max assert_(res == tgt) def test_int_raise_behaviour(self): def overflow_error_func(dtype): np.typeDict[dtype](np.iinfo(dtype).max + 1) for code in 'lLqQ': assert_raises(OverflowError, overflow_error_func, code) def test_longdouble_int(self): # gh-627 x = np.longdouble(np.inf) assert_raises(OverflowError, x.__int__) x = np.clongdouble(np.inf) assert_raises(OverflowError, x.__int__) def test_numpy_scalar_relational_operators(self): # All integer for dt1 in np.typecodes['AllInteger']: assert_(1 > np.array(0, dtype=dt1)[()], "type %s failed" % (dt1,)) assert_(not 1 < np.array(0, dtype=dt1)[()], "type %s failed" % (dt1,)) for dt2 in np.typecodes['AllInteger']: assert_(np.array(1, dtype=dt1)[()] > np.array(0, dtype=dt2)[()], "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1)[()] < np.array(0, dtype=dt2)[()], "type %s and %s failed" % (dt1, dt2)) #Unsigned integers for dt1 in 'BHILQP': assert_(-1 < np.array(1, dtype=dt1)[()], "type %s failed" % (dt1,)) assert_(not -1 > np.array(1, dtype=dt1)[()], "type %s failed" % (dt1,)) assert_(-1 != np.array(1, dtype=dt1)[()], "type %s failed" % (dt1,)) #unsigned vs signed for dt2 in 'bhilqp': assert_(np.array(1, dtype=dt1)[()] > np.array(-1, dtype=dt2)[()], "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1)[()] < np.array(-1, dtype=dt2)[()], "type %s and %s failed" % (dt1, dt2)) assert_(np.array(1, dtype=dt1)[()] != np.array(-1, dtype=dt2)[()], "type %s and %s failed" % (dt1, dt2)) #Signed integers and floats for dt1 in 'bhlqp' + np.typecodes['Float']: assert_(1 > np.array(-1, dtype=dt1)[()], "type %s failed" % (dt1,)) assert_(not 1 < np.array(-1, dtype=dt1)[()], "type %s failed" % (dt1,)) assert_(-1 == np.array(-1, dtype=dt1)[()], "type %s failed" % (dt1,)) for dt2 in 'bhlqp' + np.typecodes['Float']: assert_(np.array(1, dtype=dt1)[()] > np.array(-1, dtype=dt2)[()], "type %s and %s failed" % (dt1, dt2)) assert_(not np.array(1, dtype=dt1)[()] < np.array(-1, dtype=dt2)[()], "type %s and %s failed" % (dt1, dt2)) assert_(np.array(-1, dtype=dt1)[()] == np.array(-1, dtype=dt2)[()], "type %s and %s failed" % (dt1, dt2)) def test_scalar_comparison_to_none(self): # Scalars should just return False and not give a warnings. # The comparisons are flagged by pep8, ignore that. with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', FutureWarning) assert_(not np.float32(1) == None) assert_(not np.str_('test') == None) # This is dubious (see below): assert_(not np.datetime64('NaT') == None) assert_(np.float32(1) != None) assert_(np.str_('test') != None) # This is dubious (see below): assert_(np.datetime64('NaT') != None) assert_(len(w) == 0) # For documentation purposes, this is why the datetime is dubious. # At the time of deprecation this was no behaviour change, but # it has to be considered when the deprecations are done. assert_(np.equal(np.datetime64('NaT'), None)) #class TestRepr(TestCase): # def test_repr(self): # for t in types: # val = t(1197346475.0137341) # val_repr = repr(val) # val2 = eval(val_repr) # assert_equal( val, val2 ) class TestRepr(object): def _test_type_repr(self, t): finfo = np.finfo(t) last_fraction_bit_idx = finfo.nexp + finfo.nmant last_exponent_bit_idx = finfo.nexp storage_bytes = np.dtype(t).itemsize*8 # could add some more types to the list below for which in ['small denorm', 'small norm']: # Values from http://en.wikipedia.org/wiki/IEEE_754 constr = np.array([0x00]*storage_bytes, dtype=np.uint8) if which == 'small denorm': byte = last_fraction_bit_idx // 8 bytebit = 7-(last_fraction_bit_idx % 8) constr[byte] = 1 << bytebit elif which == 'small norm': byte = last_exponent_bit_idx // 8 bytebit = 7-(last_exponent_bit_idx % 8) constr[byte] = 1 << bytebit else: raise ValueError('hmm') val = constr.view(t)[0] val_repr = repr(val) val2 = t(eval(val_repr)) if not (val2 == 0 and val < 1e-100): assert_equal(val, val2) def test_float_repr(self): # long double test cannot work, because eval goes through a python # float for t in [np.float32, np.float64]: yield self._test_type_repr, t if not IS_PYPY: # sys.getsizeof() is not valid on PyPy class TestSizeOf(TestCase): def test_equal_nbytes(self): for type in types: x = type(0) assert_(sys.getsizeof(x) > x.nbytes) def test_error(self): d = np.float32() assert_raises(TypeError, d.__sizeof__, "a") class TestMultiply(TestCase): def test_seq_repeat(self): # Test that basic sequences get repeated when multiplied with # numpy integers. And errors are raised when multiplied with others. # Some of this behaviour may be controversial and could be open for # change. for seq_type in (list, tuple): seq = seq_type([1, 2, 3]) for numpy_type in np.typecodes["AllInteger"]: i = np.dtype(numpy_type).type(2) assert_equal(seq * i, seq * int(i)) assert_equal(i * seq, int(i) * seq) for numpy_type in np.typecodes["All"].replace("V", ""): if numpy_type in np.typecodes["AllInteger"]: continue i = np.dtype(numpy_type).type() assert_raises(TypeError, operator.mul, seq, i) assert_raises(TypeError, operator.mul, i, seq) def test_no_seq_repeat_basic_array_like(self): # Test that an array-like which does not know how to be multiplied # does not attempt sequence repeat (raise TypeError). # See also gh-7428. class ArrayLike(object): def __init__(self, arr): self.arr = arr def __array__(self): return self.arr # Test for simple ArrayLike above and memoryviews (original report) for arr_like in (ArrayLike(np.ones(3)), memoryview(np.ones(3))): assert_array_equal(arr_like * np.float32(3.), np.full(3, 3.)) assert_array_equal(np.float32(3.) * arr_like, np.full(3, 3.)) assert_array_equal(arr_like * np.int_(3), np.full(3, 3)) assert_array_equal(np.int_(3) * arr_like, np.full(3, 3)) class TestNegative(TestCase): def test_exceptions(self): a = np.ones((), dtype=np.bool_)[()] assert_raises(TypeError, operator.neg, a) def test_result(self): types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] with suppress_warnings() as sup: sup.filter(RuntimeWarning) for dt in types: a = np.ones((), dtype=dt)[()] assert_equal(operator.neg(a) + a, 0) class TestSubtract(TestCase): def test_result(self): types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?' with suppress_warnings() as sup: sup.filter(RuntimeWarning) for dt in types: a = np.ones((), dtype=dt)[()] assert_equal(operator.sub(a, a), 0) class TestAbs(TestCase): def _test_abs_func(self, absfunc): for tp in floating_types: x = tp(-1.5) assert_equal(absfunc(x), 1.5) x = tp(0.0) res = absfunc(x) # assert_equal() checks zero signedness assert_equal(res, 0.0) x = tp(-0.0) res = absfunc(x) assert_equal(res, 0.0) def test_builtin_abs(self): self._test_abs_func(abs) def test_numpy_abs(self): self._test_abs_func(np.abs) if __name__ == "__main__": run_module_suite()