%PDF- %PDF-
Direktori : /opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/tests/ |
Current File : //opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/tests/test_polynomial.py |
from __future__ import division, absolute_import, print_function ''' >>> p = np.poly1d([1.,2,3]) >>> p poly1d([ 1., 2., 3.]) >>> print(p) 2 1 x + 2 x + 3 >>> q = np.poly1d([3.,2,1]) >>> q poly1d([ 3., 2., 1.]) >>> print(q) 2 3 x + 2 x + 1 >>> print(np.poly1d([1.89999+2j, -3j, -5.12345678, 2+1j])) 3 2 (1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j) >>> print(np.poly1d([-3, -2, -1])) 2 -3 x - 2 x - 1 >>> p(0) 3.0 >>> p(5) 38.0 >>> q(0) 1.0 >>> q(5) 86.0 >>> p * q poly1d([ 3., 8., 14., 8., 3.]) >>> p / q (poly1d([ 0.33333333]), poly1d([ 1.33333333, 2.66666667])) >>> p + q poly1d([ 4., 4., 4.]) >>> p - q poly1d([-2., 0., 2.]) >>> p ** 4 poly1d([ 1., 8., 36., 104., 214., 312., 324., 216., 81.]) >>> p(q) poly1d([ 9., 12., 16., 8., 6.]) >>> q(p) poly1d([ 3., 12., 32., 40., 34.]) >>> np.asarray(p) array([ 1., 2., 3.]) >>> len(p) 2 >>> p[0], p[1], p[2], p[3] (3.0, 2.0, 1.0, 0) >>> p.integ() poly1d([ 0.33333333, 1. , 3. , 0. ]) >>> p.integ(1) poly1d([ 0.33333333, 1. , 3. , 0. ]) >>> p.integ(5) poly1d([ 0.00039683, 0.00277778, 0.025 , 0. , 0. , 0. , 0. , 0. ]) >>> p.deriv() poly1d([ 2., 2.]) >>> p.deriv(2) poly1d([ 2.]) >>> q = np.poly1d([1.,2,3], variable='y') >>> print(q) 2 1 y + 2 y + 3 >>> q = np.poly1d([1.,2,3], variable='lambda') >>> print(q) 2 1 lambda + 2 lambda + 3 >>> np.polydiv(np.poly1d([1,0,-1]), np.poly1d([1,1])) (poly1d([ 1., -1.]), poly1d([ 0.])) ''' import numpy as np from numpy.testing import ( run_module_suite, TestCase, assert_, assert_equal, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_raises, rundocs ) class TestDocs(TestCase): def test_doctests(self): return rundocs() def test_poly(self): assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]), [1, -3, -2, 6]) # From matlab docs A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]] assert_array_almost_equal(np.poly(A), [1, -6, -72, -27]) # Should produce real output for perfect conjugates assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j]))) assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j, 1-2j, 1.+3.5j, 1-3.5j]))) assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j]))) assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j]))) assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j]))) assert_(np.isrealobj(np.poly([1j, -1j]))) assert_(np.isrealobj(np.poly([1, -1]))) assert_(np.iscomplexobj(np.poly([1j, -1.0000001j]))) np.random.seed(42) a = np.random.randn(100) + 1j*np.random.randn(100) assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a)))))) def test_roots(self): assert_array_equal(np.roots([1, 0, 0]), [0, 0]) def test_str_leading_zeros(self): p = np.poly1d([4, 3, 2, 1]) p[3] = 0 assert_equal(str(p), " 2\n" "3 x + 2 x + 1") p = np.poly1d([1, 2]) p[0] = 0 p[1] = 0 assert_equal(str(p), " \n0") def test_polyfit(self): c = np.array([3., 2., 1.]) x = np.linspace(0, 2, 7) y = np.polyval(c, x) err = [1, -1, 1, -1, 1, -1, 1] weights = np.arange(8, 1, -1)**2/7.0 # Check exception when too few points for variance estimate. Note that # the Bayesian estimate requires the number of data points to exceed # degree + 3. assert_raises(ValueError, np.polyfit, [0, 1, 3], [0, 1, 3], deg=0, cov=True) # check 1D case m, cov = np.polyfit(x, y+err, 2, cov=True) est = [3.8571, 0.2857, 1.619] assert_almost_equal(est, m, decimal=4) val0 = [[2.9388, -5.8776, 1.6327], [-5.8776, 12.7347, -4.2449], [1.6327, -4.2449, 2.3220]] assert_almost_equal(val0, cov, decimal=4) m2, cov2 = np.polyfit(x, y+err, 2, w=weights, cov=True) assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4) val = [[8.7929, -10.0103, 0.9756], [-10.0103, 13.6134, -1.8178], [0.9756, -1.8178, 0.6674]] assert_almost_equal(val, cov2, decimal=4) # check 2D (n,1) case y = y[:, np.newaxis] c = c[:, np.newaxis] assert_almost_equal(c, np.polyfit(x, y, 2)) # check 2D (n,2) case yy = np.concatenate((y, y), axis=1) cc = np.concatenate((c, c), axis=1) assert_almost_equal(cc, np.polyfit(x, yy, 2)) m, cov = np.polyfit(x, yy + np.array(err)[:, np.newaxis], 2, cov=True) assert_almost_equal(est, m[:, 0], decimal=4) assert_almost_equal(est, m[:, 1], decimal=4) assert_almost_equal(val0, cov[:, :, 0], decimal=4) assert_almost_equal(val0, cov[:, :, 1], decimal=4) def test_objects(self): from decimal import Decimal p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')]) p2 = p * Decimal('1.333333333333333') assert_(p2[1] == Decimal("3.9999999999999990")) p2 = p.deriv() assert_(p2[1] == Decimal('8.0')) p2 = p.integ() assert_(p2[3] == Decimal("1.333333333333333333333333333")) assert_(p2[2] == Decimal('1.5')) assert_(np.issubdtype(p2.coeffs.dtype, np.object_)) p = np.poly([Decimal(1), Decimal(2)]) assert_equal(np.poly([Decimal(1), Decimal(2)]), [1, Decimal(-3), Decimal(2)]) def test_complex(self): p = np.poly1d([3j, 2j, 1j]) p2 = p.integ() assert_((p2.coeffs == [1j, 1j, 1j, 0]).all()) p2 = p.deriv() assert_((p2.coeffs == [6j, 2j]).all()) def test_integ_coeffs(self): p = np.poly1d([3, 2, 1]) p2 = p.integ(3, k=[9, 7, 6]) assert_( (p2.coeffs == [1/4./5., 1/3./4., 1/2./3., 9/1./2., 7, 6]).all()) def test_zero_dims(self): try: np.poly(np.zeros((0, 0))) except ValueError: pass def test_poly_int_overflow(self): """ Regression test for gh-5096. """ v = np.arange(1, 21) assert_almost_equal(np.poly(v), np.poly(np.diag(v))) def test_poly_eq(self): p = np.poly1d([1, 2, 3]) p2 = np.poly1d([1, 2, 4]) assert_equal(p == None, False) assert_equal(p != None, True) assert_equal(p == p, True) assert_equal(p == p2, False) assert_equal(p != p2, True) def test_poly_coeffs_mutable(self): """ Coefficients should be modifiable """ p = np.poly1d([1, 2, 3]) p.coeffs += 1 assert_equal(p.coeffs, [2, 3, 4]) p.coeffs[2] += 10 assert_equal(p.coeffs, [2, 3, 14]) # this never used to be allowed - let's not add features to deprecated # APIs assert_raises(AttributeError, setattr, p, 'coeffs', np.array(1)) if __name__ == "__main__": run_module_suite()