%PDF- %PDF-
Direktori : /opt/alt/python37/lib64/python3.7/site-packages/numpy/linalg/tests/ |
Current File : //opt/alt/python37/lib64/python3.7/site-packages/numpy/linalg/tests/test_linalg.py |
""" Test functions for linalg module """ from __future__ import division, absolute_import, print_function import os import sys import itertools import traceback import warnings import numpy as np from numpy import array, single, double, csingle, cdouble, dot, identity from numpy import multiply, atleast_2d, inf, asarray, matrix from numpy import linalg from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError from numpy.linalg.linalg import _multi_dot_matrix_chain_order from numpy.testing import ( assert_, assert_equal, assert_raises, assert_array_equal, assert_almost_equal, assert_allclose, run_module_suite, dec, SkipTest, suppress_warnings ) def ifthen(a, b): return not a or b def imply(a, b): return not a or b old_assert_almost_equal = assert_almost_equal def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw): if asarray(a).dtype.type in (single, csingle): decimal = single_decimal else: decimal = double_decimal old_assert_almost_equal(a, b, decimal=decimal, **kw) def get_real_dtype(dtype): return {single: single, double: double, csingle: single, cdouble: double}[dtype] def get_complex_dtype(dtype): return {single: csingle, double: cdouble, csingle: csingle, cdouble: cdouble}[dtype] def get_rtol(dtype): # Choose a safe rtol if dtype in (single, csingle): return 1e-5 else: return 1e-11 # used to categorize tests all_tags = { 'square', 'nonsquare', 'hermitian', # mutually exclusive 'generalized', 'size-0', 'strided' # optional additions } class LinalgCase(object): def __init__(self, name, a, b, tags=set()): """ A bundle of arguments to be passed to a test case, with an identifying name, the operands a and b, and a set of tags to filter the tests """ assert_(isinstance(name, str)) self.name = name self.a = a self.b = b self.tags = frozenset(tags) # prevent shared tags def check(self, do): """ Run the function `do` on this test case, expanding arguments """ do(self.a, self.b, tags=self.tags) def __repr__(self): return "<LinalgCase: %s>" % (self.name,) def apply_tag(tag, cases): """ Add the given tag (a string) to each of the cases (a list of LinalgCase objects) """ assert tag in all_tags, "Invalid tag" for case in cases: case.tags = case.tags | {tag} return cases # # Base test cases # np.random.seed(1234) CASES = [] # square test cases CASES += apply_tag('square', [ LinalgCase("single", array([[1., 2.], [3., 4.]], dtype=single), array([2., 1.], dtype=single)), LinalgCase("double", array([[1., 2.], [3., 4.]], dtype=double), array([2., 1.], dtype=double)), LinalgCase("double_2", array([[1., 2.], [3., 4.]], dtype=double), array([[2., 1., 4.], [3., 4., 6.]], dtype=double)), LinalgCase("csingle", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle), array([2. + 1j, 1. + 2j], dtype=csingle)), LinalgCase("cdouble", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), array([2. + 1j, 1. + 2j], dtype=cdouble)), LinalgCase("cdouble_2", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)), LinalgCase("0x0", np.empty((0, 0), dtype=double), np.empty((0,), dtype=double), tags={'size-0'}), LinalgCase("0x0_matrix", np.empty((0, 0), dtype=double).view(np.matrix), np.empty((0, 1), dtype=double).view(np.matrix), tags={'size-0'}), LinalgCase("8x8", np.random.rand(8, 8), np.random.rand(8)), LinalgCase("1x1", np.random.rand(1, 1), np.random.rand(1)), LinalgCase("nonarray", [[1, 2], [3, 4]], [2, 1]), LinalgCase("matrix_b_only", array([[1., 2.], [3., 4.]]), matrix([2., 1.]).T), LinalgCase("matrix_a_and_b", matrix([[1., 2.], [3., 4.]]), matrix([2., 1.]).T), ]) # non-square test-cases CASES += apply_tag('nonsquare', [ LinalgCase("single_nsq_1", array([[1., 2., 3.], [3., 4., 6.]], dtype=single), array([2., 1.], dtype=single)), LinalgCase("single_nsq_2", array([[1., 2.], [3., 4.], [5., 6.]], dtype=single), array([2., 1., 3.], dtype=single)), LinalgCase("double_nsq_1", array([[1., 2., 3.], [3., 4., 6.]], dtype=double), array([2., 1.], dtype=double)), LinalgCase("double_nsq_2", array([[1., 2.], [3., 4.], [5., 6.]], dtype=double), array([2., 1., 3.], dtype=double)), LinalgCase("csingle_nsq_1", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle), array([2. + 1j, 1. + 2j], dtype=csingle)), LinalgCase("csingle_nsq_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle), array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)), LinalgCase("cdouble_nsq_1", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), array([2. + 1j, 1. + 2j], dtype=cdouble)), LinalgCase("cdouble_nsq_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)), LinalgCase("cdouble_nsq_1_2", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), LinalgCase("cdouble_nsq_2_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), LinalgCase("8x11", np.random.rand(8, 11), np.random.rand(8)), LinalgCase("1x5", np.random.rand(1, 5), np.random.rand(1)), LinalgCase("5x1", np.random.rand(5, 1), np.random.rand(5)), LinalgCase("0x4", np.random.rand(0, 4), np.random.rand(0), tags={'size-0'}), LinalgCase("4x0", np.random.rand(4, 0), np.random.rand(4), tags={'size-0'}), ]) # hermitian test-cases CASES += apply_tag('hermitian', [ LinalgCase("hsingle", array([[1., 2.], [2., 1.]], dtype=single), None), LinalgCase("hdouble", array([[1., 2.], [2., 1.]], dtype=double), None), LinalgCase("hcsingle", array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle), None), LinalgCase("hcdouble", array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble), None), LinalgCase("hempty", np.empty((0, 0), dtype=double), None, tags={'size-0'}), LinalgCase("hnonarray", [[1, 2], [2, 1]], None), LinalgCase("matrix_b_only", array([[1., 2.], [2., 1.]]), None), LinalgCase("hmatrix_a_and_b", matrix([[1., 2.], [2., 1.]]), None), LinalgCase("hmatrix_1x1", np.random.rand(1, 1), None), ]) # # Gufunc test cases # def _make_generalized_cases(): new_cases = [] for case in CASES: if not isinstance(case.a, np.ndarray): continue a = np.array([case.a, 2 * case.a, 3 * case.a]) if case.b is None: b = None else: b = np.array([case.b, 7 * case.b, 6 * case.b]) new_case = LinalgCase(case.name + "_tile3", a, b, tags=case.tags | {'generalized'}) new_cases.append(new_case) a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape) if case.b is None: b = None else: b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape) new_case = LinalgCase(case.name + "_tile213", a, b, tags=case.tags | {'generalized'}) new_cases.append(new_case) return new_cases CASES += _make_generalized_cases() # # Generate stride combination variations of the above # def _stride_comb_iter(x): """ Generate cartesian product of strides for all axes """ if not isinstance(x, np.ndarray): yield x, "nop" return stride_set = [(1,)] * x.ndim stride_set[-1] = (1, 3, -4) if x.ndim > 1: stride_set[-2] = (1, 3, -4) if x.ndim > 2: stride_set[-3] = (1, -4) for repeats in itertools.product(*tuple(stride_set)): new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)] slices = tuple([slice(None, None, repeat) for repeat in repeats]) # new array with different strides, but same data xi = np.empty(new_shape, dtype=x.dtype) xi.view(np.uint32).fill(0xdeadbeef) xi = xi[slices] xi[...] = x xi = xi.view(x.__class__) assert_(np.all(xi == x)) yield xi, "stride_" + "_".join(["%+d" % j for j in repeats]) # generate also zero strides if possible if x.ndim >= 1 and x.shape[-1] == 1: s = list(x.strides) s[-1] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0" if x.ndim >= 2 and x.shape[-2] == 1: s = list(x.strides) s[-2] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0_x" if x.ndim >= 2 and x.shape[:-2] == (1, 1): s = list(x.strides) s[-1] = 0 s[-2] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0_0" def _make_strided_cases(): new_cases = [] for case in CASES: for a, a_label in _stride_comb_iter(case.a): for b, b_label in _stride_comb_iter(case.b): new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b, tags=case.tags | {'strided'}) new_cases.append(new_case) return new_cases CASES += _make_strided_cases() # # Test different routines against the above cases # def _check_cases(func, require=set(), exclude=set()): """ Run func on each of the cases with all of the tags in require, and none of the tags in exclude """ for case in CASES: # filter by require and exclude if case.tags & require != require: continue if case.tags & exclude: continue try: case.check(func) except Exception: msg = "In test case: %r\n\n" % case msg += traceback.format_exc() raise AssertionError(msg) class LinalgSquareTestCase(object): def test_sq_cases(self): _check_cases(self.do, require={'square'}, exclude={'generalized', 'size-0'}) def test_empty_sq_cases(self): _check_cases(self.do, require={'square', 'size-0'}, exclude={'generalized'}) class LinalgNonsquareTestCase(object): def test_nonsq_cases(self): _check_cases(self.do, require={'nonsquare'}, exclude={'generalized', 'size-0'}) def test_empty_nonsq_cases(self): _check_cases(self.do, require={'nonsquare', 'size-0'}, exclude={'generalized'}) class HermitianTestCase(object): def test_herm_cases(self): _check_cases(self.do, require={'hermitian'}, exclude={'generalized', 'size-0'}) def test_empty_herm_cases(self): _check_cases(self.do, require={'hermitian', 'size-0'}, exclude={'generalized'}) class LinalgGeneralizedSquareTestCase(object): @dec.slow def test_generalized_sq_cases(self): _check_cases(self.do, require={'generalized', 'square'}, exclude={'size-0'}) @dec.slow def test_generalized_empty_sq_cases(self): _check_cases(self.do, require={'generalized', 'square', 'size-0'}) class LinalgGeneralizedNonsquareTestCase(object): @dec.slow def test_generalized_nonsq_cases(self): _check_cases(self.do, require={'generalized', 'nonsquare'}, exclude={'size-0'}) @dec.slow def test_generalized_empty_nonsq_cases(self): _check_cases(self.do, require={'generalized', 'nonsquare', 'size-0'}) class HermitianGeneralizedTestCase(object): @dec.slow def test_generalized_herm_cases(self): _check_cases(self.do, require={'generalized', 'hermitian'}, exclude={'size-0'}) @dec.slow def test_generalized_empty_herm_cases(self): _check_cases(self.do, require={'generalized', 'hermitian', 'size-0'}, exclude={'none'}) def dot_generalized(a, b): a = asarray(a) if a.ndim >= 3: if a.ndim == b.ndim: # matrix x matrix new_shape = a.shape[:-1] + b.shape[-1:] elif a.ndim == b.ndim + 1: # matrix x vector new_shape = a.shape[:-1] else: raise ValueError("Not implemented...") r = np.empty(new_shape, dtype=np.common_type(a, b)) for c in itertools.product(*map(range, a.shape[:-2])): r[c] = dot(a[c], b[c]) return r else: return dot(a, b) def identity_like_generalized(a): a = asarray(a) if a.ndim >= 3: r = np.empty(a.shape, dtype=a.dtype) for c in itertools.product(*map(range, a.shape[:-2])): r[c] = identity(a.shape[-2]) return r else: return identity(a.shape[0]) class TestSolve(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): x = linalg.solve(a, b) assert_almost_equal(b, dot_generalized(a, x)) assert_(imply(isinstance(b, matrix), isinstance(x, matrix))) def test_types(self): def check(dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.solve(x, x).dtype, dtype) for dtype in [single, double, csingle, cdouble]: yield check, dtype def test_0_size(self): class ArraySubclass(np.ndarray): pass # Test system of 0x0 matrices a = np.arange(8).reshape(2, 2, 2) b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass) expected = linalg.solve(a, b)[:, 0:0, :] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) # Test errors for non-square and only b's dimension being 0 assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b) assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :]) # Test broadcasting error b = np.arange(6).reshape(1, 3, 2) # broadcasting error assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) # Test zero "single equations" with 0x0 matrices. b = np.arange(2).reshape(1, 2).view(ArraySubclass) expected = linalg.solve(a, b)[:, 0:0] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) b = np.arange(3).reshape(1, 3) assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b) def test_0_size_k(self): # test zero multiple equation (K=0) case. class ArraySubclass(np.ndarray): pass a = np.arange(4).reshape(1, 2, 2) b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass) expected = linalg.solve(a, b)[:, :, 0:0] result = linalg.solve(a, b[:, :, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) # test both zero. expected = linalg.solve(a, b)[:, 0:0, 0:0] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) class TestInv(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): a_inv = linalg.inv(a) assert_almost_equal(dot_generalized(a, a_inv), identity_like_generalized(a)) assert_(imply(isinstance(a, matrix), isinstance(a_inv, matrix))) def test_types(self): def check(dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.inv(x).dtype, dtype) for dtype in [single, double, csingle, cdouble]: yield check, dtype def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.inv(a) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res.shape) assert_(isinstance(res, ArraySubclass)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.inv(a) assert_(res.dtype.type is np.complex64) assert_equal(a.shape, res.shape) assert_(isinstance(res, ArraySubclass)) class TestEigvals(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): ev = linalg.eigvals(a) evalues, evectors = linalg.eig(a) assert_almost_equal(ev, evalues) def test_types(self): def check(dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.eigvals(x).dtype, dtype) x = np.array([[1, 0.5], [-1, 1]], dtype=dtype) assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype)) for dtype in [single, double, csingle, cdouble]: yield check, dtype def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.eigvals(a) assert_(res.dtype.type is np.float64) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.eigvals(a) assert_(res.dtype.type is np.complex64) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) class TestEig(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): evalues, evectors = linalg.eig(a) assert_allclose(dot_generalized(a, evectors), np.asarray(evectors) * np.asarray(evalues)[..., None, :], rtol=get_rtol(evalues.dtype)) assert_(imply(isinstance(a, matrix), isinstance(evectors, matrix))) def test_types(self): def check(dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) w, v = np.linalg.eig(x) assert_equal(w.dtype, dtype) assert_equal(v.dtype, dtype) x = np.array([[1, 0.5], [-1, 1]], dtype=dtype) w, v = np.linalg.eig(x) assert_equal(w.dtype, get_complex_dtype(dtype)) assert_equal(v.dtype, get_complex_dtype(dtype)) for dtype in [single, double, csingle, cdouble]: yield check, dtype def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res, res_v = linalg.eig(a) assert_(res_v.dtype.type is np.float64) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res_v.shape) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res, res_v = linalg.eig(a) assert_(res_v.dtype.type is np.complex64) assert_(res.dtype.type is np.complex64) assert_equal(a.shape, res_v.shape) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) class TestSVD(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): if 'size-0' in tags: assert_raises(LinAlgError, linalg.svd, a, 0) return u, s, vt = linalg.svd(a, 0) assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :], np.asarray(vt)), rtol=get_rtol(u.dtype)) assert_(imply(isinstance(a, matrix), isinstance(u, matrix))) assert_(imply(isinstance(a, matrix), isinstance(vt, matrix))) def test_types(self): def check(dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) u, s, vh = linalg.svd(x) assert_equal(u.dtype, dtype) assert_equal(s.dtype, get_real_dtype(dtype)) assert_equal(vh.dtype, dtype) s = linalg.svd(x, compute_uv=False) assert_equal(s.dtype, get_real_dtype(dtype)) for dtype in [single, double, csingle, cdouble]: yield check, dtype def test_0_size(self): # These raise errors currently # (which does not mean that it may not make sense) a = np.zeros((0, 0), dtype=np.complex64) assert_raises(linalg.LinAlgError, linalg.svd, a) a = np.zeros((0, 1), dtype=np.complex64) assert_raises(linalg.LinAlgError, linalg.svd, a) a = np.zeros((1, 0), dtype=np.complex64) assert_raises(linalg.LinAlgError, linalg.svd, a) class TestCondSVD(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): c = asarray(a) # a might be a matrix if 'size-0' in tags: assert_raises(LinAlgError, linalg.svd, c, compute_uv=False) return s = linalg.svd(c, compute_uv=False) assert_almost_equal( s[..., 0] / s[..., -1], linalg.cond(a), single_decimal=5, double_decimal=11) def test_stacked_arrays_explicitly(self): A = np.array([[1., 2., 1.], [0, -2., 0], [6., 2., 3.]]) assert_equal(linalg.cond(A), linalg.cond(A[None, ...])[0]) class TestCond2(LinalgSquareTestCase): def do(self, a, b, tags): c = asarray(a) # a might be a matrix if 'size-0' in tags: assert_raises(LinAlgError, linalg.svd, c, compute_uv=False) return s = linalg.svd(c, compute_uv=False) assert_almost_equal( s[..., 0] / s[..., -1], linalg.cond(a, 2), single_decimal=5, double_decimal=11) def test_stacked_arrays_explicitly(self): A = np.array([[1., 2., 1.], [0, -2., 0], [6., 2., 3.]]) assert_equal(linalg.cond(A, 2), linalg.cond(A[None, ...], 2)[0]) class TestCondInf(object): def test(self): A = array([[1., 0, 0], [0, -2., 0], [0, 0, 3.]]) assert_almost_equal(linalg.cond(A, inf), 3.) class TestPinv(LinalgSquareTestCase, LinalgNonsquareTestCase): def do(self, a, b, tags): a_ginv = linalg.pinv(a) # `a @ a_ginv == I` does not hold if a is singular assert_almost_equal(dot(a, a_ginv).dot(a), a, single_decimal=5, double_decimal=11) assert_(imply(isinstance(a, matrix), isinstance(a_ginv, matrix))) class TestDet(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): def do(self, a, b, tags): d = linalg.det(a) (s, ld) = linalg.slogdet(a) if asarray(a).dtype.type in (single, double): ad = asarray(a).astype(double) else: ad = asarray(a).astype(cdouble) ev = linalg.eigvals(ad) assert_almost_equal(d, multiply.reduce(ev, axis=-1)) assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1)) s = np.atleast_1d(s) ld = np.atleast_1d(ld) m = (s != 0) assert_almost_equal(np.abs(s[m]), 1) assert_equal(ld[~m], -inf) def test_zero(self): assert_equal(linalg.det([[0.0]]), 0.0) assert_equal(type(linalg.det([[0.0]])), double) assert_equal(linalg.det([[0.0j]]), 0.0) assert_equal(type(linalg.det([[0.0j]])), cdouble) assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf)) assert_equal(type(linalg.slogdet([[0.0]])[0]), double) assert_equal(type(linalg.slogdet([[0.0]])[1]), double) assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf)) assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble) assert_equal(type(linalg.slogdet([[0.0j]])[1]), double) def test_types(self): def check(dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(np.linalg.det(x).dtype, dtype) ph, s = np.linalg.slogdet(x) assert_equal(s.dtype, get_real_dtype(dtype)) assert_equal(ph.dtype, dtype) for dtype in [single, double, csingle, cdouble]: yield check, dtype def test_0_size(self): a = np.zeros((0, 0), dtype=np.complex64) res = linalg.det(a) assert_equal(res, 1.) assert_(res.dtype.type is np.complex64) res = linalg.slogdet(a) assert_equal(res, (1, 0)) assert_(res[0].dtype.type is np.complex64) assert_(res[1].dtype.type is np.float32) a = np.zeros((0, 0), dtype=np.float64) res = linalg.det(a) assert_equal(res, 1.) assert_(res.dtype.type is np.float64) res = linalg.slogdet(a) assert_equal(res, (1, 0)) assert_(res[0].dtype.type is np.float64) assert_(res[1].dtype.type is np.float64) class TestLstsq(LinalgSquareTestCase, LinalgNonsquareTestCase): def do(self, a, b, tags): if 'size-0' in tags: assert_raises(LinAlgError, linalg.lstsq, a, b) return arr = np.asarray(a) m, n = arr.shape u, s, vt = linalg.svd(a, 0) x, residuals, rank, sv = linalg.lstsq(a, b) if m <= n: assert_almost_equal(b, dot(a, x)) assert_equal(rank, m) else: assert_equal(rank, n) assert_almost_equal(sv, sv.__array_wrap__(s)) if rank == n and m > n: expect_resids = ( np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0) expect_resids = np.asarray(expect_resids) if np.asarray(b).ndim == 1: expect_resids.shape = (1,) assert_equal(residuals.shape, expect_resids.shape) else: expect_resids = np.array([]).view(type(x)) assert_almost_equal(residuals, expect_resids) assert_(np.issubdtype(residuals.dtype, np.floating)) assert_(imply(isinstance(b, matrix), isinstance(x, matrix))) assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix))) class TestMatrixPower(object): R90 = array([[0, 1], [-1, 0]]) Arb22 = array([[4, -7], [-2, 10]]) noninv = array([[1, 0], [0, 0]]) arbfloat = array([[0.1, 3.2], [1.2, 0.7]]) large = identity(10) t = large[1, :].copy() large[1, :] = large[0,:] large[0, :] = t def test_large_power(self): assert_equal( matrix_power(self.R90, 2 ** 100 + 2 ** 10 + 2 ** 5 + 1), self.R90) def test_large_power_trailing_zero(self): assert_equal( matrix_power(self.R90, 2 ** 100 + 2 ** 10 + 2 ** 5), identity(2)) def testip_zero(self): def tz(M): mz = matrix_power(M, 0) assert_equal(mz, identity(M.shape[0])) assert_equal(mz.dtype, M.dtype) for M in [self.Arb22, self.arbfloat, self.large]: yield tz, M def testip_one(self): def tz(M): mz = matrix_power(M, 1) assert_equal(mz, M) assert_equal(mz.dtype, M.dtype) for M in [self.Arb22, self.arbfloat, self.large]: yield tz, M def testip_two(self): def tz(M): mz = matrix_power(M, 2) assert_equal(mz, dot(M, M)) assert_equal(mz.dtype, M.dtype) for M in [self.Arb22, self.arbfloat, self.large]: yield tz, M def testip_invert(self): def tz(M): mz = matrix_power(M, -1) assert_almost_equal(identity(M.shape[0]), dot(mz, M)) for M in [self.R90, self.Arb22, self.arbfloat, self.large]: yield tz, M def test_invert_noninvertible(self): import numpy.linalg assert_raises(numpy.linalg.linalg.LinAlgError, lambda: matrix_power(self.noninv, -1)) class TestBoolPower(object): def test_square(self): A = array([[True, False], [True, True]]) assert_equal(matrix_power(A, 2), A) class TestEigvalsh(HermitianTestCase, HermitianGeneralizedTestCase): def do(self, a, b, tags): # note that eigenvalue arrays returned by eig must be sorted since # their order isn't guaranteed. ev = linalg.eigvalsh(a, 'L') evalues, evectors = linalg.eig(a) evalues.sort(axis=-1) assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype)) ev2 = linalg.eigvalsh(a, 'U') assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype)) def test_types(self): def check(dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) w = np.linalg.eigvalsh(x) assert_equal(w.dtype, get_real_dtype(dtype)) for dtype in [single, double, csingle, cdouble]: yield check, dtype def test_invalid(self): x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32) assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong") assert_raises(ValueError, np.linalg.eigvalsh, x, "lower") assert_raises(ValueError, np.linalg.eigvalsh, x, "upper") def test_UPLO(self): Klo = np.array([[0, 0], [1, 0]], dtype=np.double) Kup = np.array([[0, 1], [0, 0]], dtype=np.double) tgt = np.array([-1, 1], dtype=np.double) rtol = get_rtol(np.double) # Check default is 'L' w = np.linalg.eigvalsh(Klo) assert_allclose(w, tgt, rtol=rtol) # Check 'L' w = np.linalg.eigvalsh(Klo, UPLO='L') assert_allclose(w, tgt, rtol=rtol) # Check 'l' w = np.linalg.eigvalsh(Klo, UPLO='l') assert_allclose(w, tgt, rtol=rtol) # Check 'U' w = np.linalg.eigvalsh(Kup, UPLO='U') assert_allclose(w, tgt, rtol=rtol) # Check 'u' w = np.linalg.eigvalsh(Kup, UPLO='u') assert_allclose(w, tgt, rtol=rtol) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.eigvalsh(a) assert_(res.dtype.type is np.float64) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.eigvalsh(a) assert_(res.dtype.type is np.float32) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(res, np.ndarray)) class TestEigh(HermitianTestCase, HermitianGeneralizedTestCase): def do(self, a, b, tags): # note that eigenvalue arrays returned by eig must be sorted since # their order isn't guaranteed. ev, evc = linalg.eigh(a) evalues, evectors = linalg.eig(a) evalues.sort(axis=-1) assert_almost_equal(ev, evalues) assert_allclose(dot_generalized(a, evc), np.asarray(ev)[..., None, :] * np.asarray(evc), rtol=get_rtol(ev.dtype)) ev2, evc2 = linalg.eigh(a, 'U') assert_almost_equal(ev2, evalues) assert_allclose(dot_generalized(a, evc2), np.asarray(ev2)[..., None, :] * np.asarray(evc2), rtol=get_rtol(ev.dtype), err_msg=repr(a)) def test_types(self): def check(dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) w, v = np.linalg.eigh(x) assert_equal(w.dtype, get_real_dtype(dtype)) assert_equal(v.dtype, dtype) for dtype in [single, double, csingle, cdouble]: yield check, dtype def test_invalid(self): x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32) assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong") assert_raises(ValueError, np.linalg.eigh, x, "lower") assert_raises(ValueError, np.linalg.eigh, x, "upper") def test_UPLO(self): Klo = np.array([[0, 0], [1, 0]], dtype=np.double) Kup = np.array([[0, 1], [0, 0]], dtype=np.double) tgt = np.array([-1, 1], dtype=np.double) rtol = get_rtol(np.double) # Check default is 'L' w, v = np.linalg.eigh(Klo) assert_allclose(w, tgt, rtol=rtol) # Check 'L' w, v = np.linalg.eigh(Klo, UPLO='L') assert_allclose(w, tgt, rtol=rtol) # Check 'l' w, v = np.linalg.eigh(Klo, UPLO='l') assert_allclose(w, tgt, rtol=rtol) # Check 'U' w, v = np.linalg.eigh(Kup, UPLO='U') assert_allclose(w, tgt, rtol=rtol) # Check 'u' w, v = np.linalg.eigh(Kup, UPLO='u') assert_allclose(w, tgt, rtol=rtol) def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res, res_v = linalg.eigh(a) assert_(res_v.dtype.type is np.float64) assert_(res.dtype.type is np.float64) assert_equal(a.shape, res_v.shape) assert_equal((0, 1), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass) res, res_v = linalg.eigh(a) assert_(res_v.dtype.type is np.complex64) assert_(res.dtype.type is np.float32) assert_equal(a.shape, res_v.shape) assert_equal((0,), res.shape) # This is just for documentation, it might make sense to change: assert_(isinstance(a, np.ndarray)) class _TestNorm(object): dt = None dec = None def test_empty(self): assert_equal(norm([]), 0.0) assert_equal(norm(array([], dtype=self.dt)), 0.0) assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0) def test_vector_return_type(self): a = np.array([1, 0, 1]) exact_types = np.typecodes['AllInteger'] inexact_types = np.typecodes['AllFloat'] all_types = exact_types + inexact_types for each_inexact_types in all_types: at = a.astype(each_inexact_types) an = norm(at, -np.inf) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 0.0) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "divide by zero encountered") an = norm(at, -1) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 0.0) an = norm(at, 0) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2) an = norm(at, 1) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2.0) an = norm(at, 2) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/2.0)) an = norm(at, 4) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/4.0)) an = norm(at, np.inf) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 1.0) def test_matrix_return_type(self): a = np.array([[1, 0, 1], [0, 1, 1]]) exact_types = np.typecodes['AllInteger'] # float32, complex64, float64, complex128 types are the only types # allowed by `linalg`, which performs the matrix operations used # within `norm`. inexact_types = 'fdFD' all_types = exact_types + inexact_types for each_inexact_types in all_types: at = a.astype(each_inexact_types) an = norm(at, -np.inf) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2.0) with suppress_warnings() as sup: sup.filter(RuntimeWarning, "divide by zero encountered") an = norm(at, -1) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 1.0) an = norm(at, 1) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2.0) an = norm(at, 2) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 3.0**(1.0/2.0)) an = norm(at, -2) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 1.0) an = norm(at, np.inf) assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2.0) an = norm(at, 'fro') assert_(issubclass(an.dtype.type, np.floating)) assert_almost_equal(an, 2.0) an = norm(at, 'nuc') assert_(issubclass(an.dtype.type, np.floating)) # Lower bar needed to support low precision floats. # They end up being off by 1 in the 7th place. old_assert_almost_equal(an, 2.7320508075688772, decimal=6) def test_vector(self): a = [1, 2, 3, 4] b = [-1, -2, -3, -4] c = [-1, 2, -3, 4] def _test(v): np.testing.assert_almost_equal(norm(v), 30 ** 0.5, decimal=self.dec) np.testing.assert_almost_equal(norm(v, inf), 4.0, decimal=self.dec) np.testing.assert_almost_equal(norm(v, -inf), 1.0, decimal=self.dec) np.testing.assert_almost_equal(norm(v, 1), 10.0, decimal=self.dec) np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25, decimal=self.dec) np.testing.assert_almost_equal(norm(v, 2), 30 ** 0.5, decimal=self.dec) np.testing.assert_almost_equal(norm(v, -2), ((205. / 144) ** -0.5), decimal=self.dec) np.testing.assert_almost_equal(norm(v, 0), 4, decimal=self.dec) for v in (a, b, c,): _test(v) for v in (array(a, dtype=self.dt), array(b, dtype=self.dt), array(c, dtype=self.dt)): _test(v) def test_matrix_2x2(self): A = matrix([[1, 3], [5, 7]], dtype=self.dt) assert_almost_equal(norm(A), 84 ** 0.5) assert_almost_equal(norm(A, 'fro'), 84 ** 0.5) assert_almost_equal(norm(A, 'nuc'), 10.0) assert_almost_equal(norm(A, inf), 12.0) assert_almost_equal(norm(A, -inf), 4.0) assert_almost_equal(norm(A, 1), 10.0) assert_almost_equal(norm(A, -1), 6.0) assert_almost_equal(norm(A, 2), 9.1231056256176615) assert_almost_equal(norm(A, -2), 0.87689437438234041) assert_raises(ValueError, norm, A, 'nofro') assert_raises(ValueError, norm, A, -3) assert_raises(ValueError, norm, A, 0) def test_matrix_3x3(self): # This test has been added because the 2x2 example # happened to have equal nuclear norm and induced 1-norm. # The 1/10 scaling factor accommodates the absolute tolerance # used in assert_almost_equal. A = (1 / 10) * \ np.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=self.dt) assert_almost_equal(norm(A), (1 / 10) * 89 ** 0.5) assert_almost_equal(norm(A, 'fro'), (1 / 10) * 89 ** 0.5) assert_almost_equal(norm(A, 'nuc'), 1.3366836911774836) assert_almost_equal(norm(A, inf), 1.1) assert_almost_equal(norm(A, -inf), 0.6) assert_almost_equal(norm(A, 1), 1.0) assert_almost_equal(norm(A, -1), 0.4) assert_almost_equal(norm(A, 2), 0.88722940323461277) assert_almost_equal(norm(A, -2), 0.19456584790481812) def test_axis(self): # Vector norms. # Compare the use of `axis` with computing the norm of each row # or column separately. A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt) for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]: expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])] assert_almost_equal(norm(A, ord=order, axis=0), expected0) expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])] assert_almost_equal(norm(A, ord=order, axis=1), expected1) # Matrix norms. B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) nd = B.ndim for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']: for axis in itertools.combinations(range(-nd, nd), 2): row_axis, col_axis = axis if row_axis < 0: row_axis += nd if col_axis < 0: col_axis += nd if row_axis == col_axis: assert_raises(ValueError, norm, B, ord=order, axis=axis) else: n = norm(B, ord=order, axis=axis) # The logic using k_index only works for nd = 3. # This has to be changed if nd is increased. k_index = nd - (row_axis + col_axis) if row_axis < col_axis: expected = [norm(B[:].take(k, axis=k_index), ord=order) for k in range(B.shape[k_index])] else: expected = [norm(B[:].take(k, axis=k_index).T, ord=order) for k in range(B.shape[k_index])] assert_almost_equal(n, expected) def test_keepdims(self): A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) allclose_err = 'order {0}, axis = {1}' shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}' # check the order=None, axis=None case expected = norm(A, ord=None, axis=None) found = norm(A, ord=None, axis=None, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(None, None)) expected_shape = (1, 1, 1) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, None, None)) # Vector norms. for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]: for k in range(A.ndim): expected = norm(A, ord=order, axis=k) found = norm(A, ord=order, axis=k, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(order, k)) expected_shape = list(A.shape) expected_shape[k] = 1 expected_shape = tuple(expected_shape) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, order, k)) # Matrix norms. for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro', 'nuc']: for k in itertools.permutations(range(A.ndim), 2): expected = norm(A, ord=order, axis=k) found = norm(A, ord=order, axis=k, keepdims=True) assert_allclose(np.squeeze(found), expected, err_msg=allclose_err.format(order, k)) expected_shape = list(A.shape) expected_shape[k[0]] = 1 expected_shape[k[1]] = 1 expected_shape = tuple(expected_shape) assert_(found.shape == expected_shape, shape_err.format(found.shape, expected_shape, order, k)) def test_bad_args(self): # Check that bad arguments raise the appropriate exceptions. A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt) B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4) # Using `axis=<integer>` or passing in a 1-D array implies vector # norms are being computed, so also using `ord='fro'` # or `ord='nuc'` raises a ValueError. assert_raises(ValueError, norm, A, 'fro', 0) assert_raises(ValueError, norm, A, 'nuc', 0) assert_raises(ValueError, norm, [3, 4], 'fro', None) assert_raises(ValueError, norm, [3, 4], 'nuc', None) # Similarly, norm should raise an exception when ord is any finite # number other than 1, 2, -1 or -2 when computing matrix norms. for order in [0, 3]: assert_raises(ValueError, norm, A, order, None) assert_raises(ValueError, norm, A, order, (0, 1)) assert_raises(ValueError, norm, B, order, (1, 2)) # Invalid axis assert_raises(np.AxisError, norm, B, None, 3) assert_raises(np.AxisError, norm, B, None, (2, 3)) assert_raises(ValueError, norm, B, None, (0, 1, 2)) class TestNorm_NonSystematic(object): def test_longdouble_norm(self): # Non-regression test: p-norm of longdouble would previously raise # UnboundLocalError. x = np.arange(10, dtype=np.longdouble) old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2) def test_intmin(self): # Non-regression test: p-norm of signed integer would previously do # float cast and abs in the wrong order. x = np.array([-2 ** 31], dtype=np.int32) old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5) def test_complex_high_ord(self): # gh-4156 d = np.empty((2,), dtype=np.clongdouble) d[0] = 6 + 7j d[1] = -6 + 7j res = 11.615898132184 old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10) d = d.astype(np.complex128) old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9) d = d.astype(np.complex64) old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5) class TestNormDouble(_TestNorm): dt = np.double dec = 12 class TestNormSingle(_TestNorm): dt = np.float32 dec = 6 class TestNormInt64(_TestNorm): dt = np.int64 dec = 12 class TestMatrixRank(object): def test_matrix_rank(self): # Full rank matrix yield assert_equal, 4, matrix_rank(np.eye(4)) # rank deficient matrix I = np.eye(4) I[-1, -1] = 0. yield assert_equal, matrix_rank(I), 3 # All zeros - zero rank yield assert_equal, matrix_rank(np.zeros((4, 4))), 0 # 1 dimension - rank 1 unless all 0 yield assert_equal, matrix_rank([1, 0, 0, 0]), 1 yield assert_equal, matrix_rank(np.zeros((4,))), 0 # accepts array-like yield assert_equal, matrix_rank([1]), 1 # greater than 2 dimensions treated as stacked matrices ms = np.array([I, np.eye(4), np.zeros((4,4))]) yield assert_equal, matrix_rank(ms), np.array([3, 4, 0]) # works on scalar yield assert_equal, matrix_rank(1), 1 def test_reduced_rank(): # Test matrices with reduced rank rng = np.random.RandomState(20120714) for i in range(100): # Make a rank deficient matrix X = rng.normal(size=(40, 10)) X[:, 0] = X[:, 1] + X[:, 2] # Assert that matrix_rank detected deficiency assert_equal(matrix_rank(X), 9) X[:, 3] = X[:, 4] + X[:, 5] assert_equal(matrix_rank(X), 8) class TestQR(object): def check_qr(self, a): # This test expects the argument `a` to be an ndarray or # a subclass of an ndarray of inexact type. a_type = type(a) a_dtype = a.dtype m, n = a.shape k = min(m, n) # mode == 'complete' q, r = linalg.qr(a, mode='complete') assert_(q.dtype == a_dtype) assert_(r.dtype == a_dtype) assert_(isinstance(q, a_type)) assert_(isinstance(r, a_type)) assert_(q.shape == (m, m)) assert_(r.shape == (m, n)) assert_almost_equal(dot(q, r), a) assert_almost_equal(dot(q.T.conj(), q), np.eye(m)) assert_almost_equal(np.triu(r), r) # mode == 'reduced' q1, r1 = linalg.qr(a, mode='reduced') assert_(q1.dtype == a_dtype) assert_(r1.dtype == a_dtype) assert_(isinstance(q1, a_type)) assert_(isinstance(r1, a_type)) assert_(q1.shape == (m, k)) assert_(r1.shape == (k, n)) assert_almost_equal(dot(q1, r1), a) assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k)) assert_almost_equal(np.triu(r1), r1) # mode == 'r' r2 = linalg.qr(a, mode='r') assert_(r2.dtype == a_dtype) assert_(isinstance(r2, a_type)) assert_almost_equal(r2, r1) def test_qr_empty(self): a = np.zeros((0, 2)) assert_raises(linalg.LinAlgError, linalg.qr, a) def test_mode_raw(self): # The factorization is not unique and varies between libraries, # so it is not possible to check against known values. Functional # testing is a possibility, but awaits the exposure of more # of the functions in lapack_lite. Consequently, this test is # very limited in scope. Note that the results are in FORTRAN # order, hence the h arrays are transposed. a = array([[1, 2], [3, 4], [5, 6]], dtype=np.double) # Test double h, tau = linalg.qr(a, mode='raw') assert_(h.dtype == np.double) assert_(tau.dtype == np.double) assert_(h.shape == (2, 3)) assert_(tau.shape == (2,)) h, tau = linalg.qr(a.T, mode='raw') assert_(h.dtype == np.double) assert_(tau.dtype == np.double) assert_(h.shape == (3, 2)) assert_(tau.shape == (2,)) def test_mode_all_but_economic(self): a = array([[1, 2], [3, 4]]) b = array([[1, 2], [3, 4], [5, 6]]) for dt in "fd": m1 = a.astype(dt) m2 = b.astype(dt) self.check_qr(m1) self.check_qr(m2) self.check_qr(m2.T) self.check_qr(matrix(m1)) for dt in "fd": m1 = 1 + 1j * a.astype(dt) m2 = 1 + 1j * b.astype(dt) self.check_qr(m1) self.check_qr(m2) self.check_qr(m2.T) self.check_qr(matrix(m1)) def test_0_size(self): # There may be good ways to do (some of this) reasonably: a = np.zeros((0, 0)) assert_raises(linalg.LinAlgError, linalg.qr, a) a = np.zeros((0, 1)) assert_raises(linalg.LinAlgError, linalg.qr, a) a = np.zeros((1, 0)) assert_raises(linalg.LinAlgError, linalg.qr, a) class TestCholesky(object): # TODO: are there no other tests for cholesky? def test_0_size(self): class ArraySubclass(np.ndarray): pass a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass) res = linalg.cholesky(a) assert_equal(a.shape, res.shape) assert_(res.dtype.type is np.float64) # for documentation purpose: assert_(isinstance(res, np.ndarray)) a = np.zeros((1, 0, 0), dtype=np.complex64).view(ArraySubclass) res = linalg.cholesky(a) assert_equal(a.shape, res.shape) assert_(res.dtype.type is np.complex64) assert_(isinstance(res, np.ndarray)) def test_byteorder_check(): # Byte order check should pass for native order if sys.byteorder == 'little': native = '<' else: native = '>' for dtt in (np.float32, np.float64): arr = np.eye(4, dtype=dtt) n_arr = arr.newbyteorder(native) sw_arr = arr.newbyteorder('S').byteswap() assert_equal(arr.dtype.byteorder, '=') for routine in (linalg.inv, linalg.det, linalg.pinv): # Normal call res = routine(arr) # Native but not '=' assert_array_equal(res, routine(n_arr)) # Swapped assert_array_equal(res, routine(sw_arr)) def test_generalized_raise_multiloop(): # It should raise an error even if the error doesn't occur in the # last iteration of the ufunc inner loop invertible = np.array([[1, 2], [3, 4]]) non_invertible = np.array([[1, 1], [1, 1]]) x = np.zeros([4, 4, 2, 2])[1::2] x[...] = invertible x[0, 0] = non_invertible assert_raises(np.linalg.LinAlgError, np.linalg.inv, x) def test_xerbla_override(): # Check that our xerbla has been successfully linked in. If it is not, # the default xerbla routine is called, which prints a message to stdout # and may, or may not, abort the process depending on the LAPACK package. XERBLA_OK = 255 try: pid = os.fork() except (OSError, AttributeError): # fork failed, or not running on POSIX raise SkipTest("Not POSIX or fork failed.") if pid == 0: # child; close i/o file handles os.close(1) os.close(0) # Avoid producing core files. import resource resource.setrlimit(resource.RLIMIT_CORE, (0, 0)) # These calls may abort. try: np.linalg.lapack_lite.xerbla() except ValueError: pass except: os._exit(os.EX_CONFIG) try: a = np.array([[1.]]) np.linalg.lapack_lite.dorgqr( 1, 1, 1, a, 0, # <- invalid value a, a, 0, 0) except ValueError as e: if "DORGQR parameter number 5" in str(e): # success, reuse error code to mark success as # FORTRAN STOP returns as success. os._exit(XERBLA_OK) # Did not abort, but our xerbla was not linked in. os._exit(os.EX_CONFIG) else: # parent pid, status = os.wait() if os.WEXITSTATUS(status) != XERBLA_OK: raise SkipTest('Numpy xerbla not linked in.') class TestMultiDot(object): def test_basic_function_with_three_arguments(self): # multi_dot with three arguments uses a fast hand coded algorithm to # determine the optimal order. Therefore test it separately. A = np.random.random((6, 2)) B = np.random.random((2, 6)) C = np.random.random((6, 2)) assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C)) assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C))) def test_basic_function_with_dynamic_programing_optimization(self): # multi_dot with four or more arguments uses the dynamic programing # optimization and therefore deserve a separate A = np.random.random((6, 2)) B = np.random.random((2, 6)) C = np.random.random((6, 2)) D = np.random.random((2, 1)) assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D)) def test_vector_as_first_argument(self): # The first argument can be 1-D A1d = np.random.random(2) # 1-D B = np.random.random((2, 6)) C = np.random.random((6, 2)) D = np.random.random((2, 2)) # the result should be 1-D assert_equal(multi_dot([A1d, B, C, D]).shape, (2,)) def test_vector_as_last_argument(self): # The last argument can be 1-D A = np.random.random((6, 2)) B = np.random.random((2, 6)) C = np.random.random((6, 2)) D1d = np.random.random(2) # 1-D # the result should be 1-D assert_equal(multi_dot([A, B, C, D1d]).shape, (6,)) def test_vector_as_first_and_last_argument(self): # The first and last arguments can be 1-D A1d = np.random.random(2) # 1-D B = np.random.random((2, 6)) C = np.random.random((6, 2)) D1d = np.random.random(2) # 1-D # the result should be a scalar assert_equal(multi_dot([A1d, B, C, D1d]).shape, ()) def test_dynamic_programming_logic(self): # Test for the dynamic programming part # This test is directly taken from Cormen page 376. arrays = [np.random.random((30, 35)), np.random.random((35, 15)), np.random.random((15, 5)), np.random.random((5, 10)), np.random.random((10, 20)), np.random.random((20, 25))] m_expected = np.array([[0., 15750., 7875., 9375., 11875., 15125.], [0., 0., 2625., 4375., 7125., 10500.], [0., 0., 0., 750., 2500., 5375.], [0., 0., 0., 0., 1000., 3500.], [0., 0., 0., 0., 0., 5000.], [0., 0., 0., 0., 0., 0.]]) s_expected = np.array([[0, 1, 1, 3, 3, 3], [0, 0, 2, 3, 3, 3], [0, 0, 0, 3, 3, 3], [0, 0, 0, 0, 4, 5], [0, 0, 0, 0, 0, 5], [0, 0, 0, 0, 0, 0]], dtype=np.int) s_expected -= 1 # Cormen uses 1-based index, python does not. s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True) # Only the upper triangular part (without the diagonal) is interesting. assert_almost_equal(np.triu(s[:-1, 1:]), np.triu(s_expected[:-1, 1:])) assert_almost_equal(np.triu(m), np.triu(m_expected)) def test_too_few_input_arrays(self): assert_raises(ValueError, multi_dot, []) assert_raises(ValueError, multi_dot, [np.random.random((3, 3))]) if __name__ == "__main__": run_module_suite()