%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /opt/alt/python37/lib64/python3.7/site-packages/numpy/ma/
Upload File :
Create Path :
Current File : //opt/alt/python37/lib64/python3.7/site-packages/numpy/ma/__init__.py

"""
=============
Masked Arrays
=============

Arrays sometimes contain invalid or missing data.  When doing operations
on such arrays, we wish to suppress invalid values, which is the purpose masked
arrays fulfill (an example of typical use is given below).

For example, examine the following array:

>>> x = np.array([2, 1, 3, np.nan, 5, 2, 3, np.nan])

When we try to calculate the mean of the data, the result is undetermined:

>>> np.mean(x)
nan

The mean is calculated using roughly ``np.sum(x)/len(x)``, but since
any number added to ``NaN`` [1]_ produces ``NaN``, this doesn't work.  Enter
masked arrays:

>>> m = np.ma.masked_array(x, np.isnan(x))
>>> m
masked_array(data = [2.0 1.0 3.0 -- 5.0 2.0 3.0 --],
      mask = [False False False  True False False False  True],
      fill_value=1e+20)

Here, we construct a masked array that suppress all ``NaN`` values.  We
may now proceed to calculate the mean of the other values:

>>> np.mean(m)
2.6666666666666665

.. [1] Not-a-Number, a floating point value that is the result of an
       invalid operation.

.. moduleauthor:: Pierre Gerard-Marchant
.. moduleauthor:: Jarrod Millman

"""
from __future__ import division, absolute_import, print_function

from . import core
from .core import *

from . import extras
from .extras import *

__all__ = ['core', 'extras']
__all__ += core.__all__
__all__ += extras.__all__

from numpy.testing.nosetester import _numpy_tester
test = _numpy_tester().test
bench = _numpy_tester().bench

Zerion Mini Shell 1.0