%PDF- %PDF-
Direktori : /opt/alt/python37/lib64/python3.7/site-packages/sqlalchemy/dialects/postgresql/ |
Current File : //opt/alt/python37/lib64/python3.7/site-packages/sqlalchemy/dialects/postgresql/array.py |
# postgresql/array.py # Copyright (C) 2005-2019 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php from .base import colspecs from .base import ischema_names from ... import types as sqltypes from ...sql import expression from ...sql import operators try: from uuid import UUID as _python_UUID # noqa except ImportError: _python_UUID = None def Any(other, arrexpr, operator=operators.eq): """A synonym for the :meth:`.ARRAY.Comparator.any` method. This method is legacy and is here for backwards-compatibility. .. seealso:: :func:`.expression.any_` """ return arrexpr.any(other, operator) def All(other, arrexpr, operator=operators.eq): """A synonym for the :meth:`.ARRAY.Comparator.all` method. This method is legacy and is here for backwards-compatibility. .. seealso:: :func:`.expression.all_` """ return arrexpr.all(other, operator) class array(expression.Tuple): """A PostgreSQL ARRAY literal. This is used to produce ARRAY literals in SQL expressions, e.g.:: from sqlalchemy.dialects.postgresql import array from sqlalchemy.dialects import postgresql from sqlalchemy import select, func stmt = select([ array([1,2]) + array([3,4,5]) ]) print(stmt.compile(dialect=postgresql.dialect())) Produces the SQL:: SELECT ARRAY[%(param_1)s, %(param_2)s] || ARRAY[%(param_3)s, %(param_4)s, %(param_5)s]) AS anon_1 An instance of :class:`.array` will always have the datatype :class:`.ARRAY`. The "inner" type of the array is inferred from the values present, unless the ``type_`` keyword argument is passed:: array(['foo', 'bar'], type_=CHAR) Multidimensional arrays are produced by nesting :class:`.array` constructs. The dimensionality of the final :class:`.ARRAY` type is calculated by recursively adding the dimensions of the inner :class:`.ARRAY` type:: stmt = select([ array([ array([1, 2]), array([3, 4]), array([column('q'), column('x')]) ]) ]) print(stmt.compile(dialect=postgresql.dialect())) Produces:: SELECT ARRAY[ARRAY[%(param_1)s, %(param_2)s], ARRAY[%(param_3)s, %(param_4)s], ARRAY[q, x]] AS anon_1 .. versionadded:: 1.3.6 added support for multidimensional array literals .. seealso:: :class:`.postgresql.ARRAY` """ __visit_name__ = "array" def __init__(self, clauses, **kw): super(array, self).__init__(*clauses, **kw) if isinstance(self.type, ARRAY): self.type = ARRAY( self.type.item_type, dimensions=self.type.dimensions + 1 if self.type.dimensions is not None else 2, ) else: self.type = ARRAY(self.type) def _bind_param(self, operator, obj, _assume_scalar=False, type_=None): if _assume_scalar or operator is operators.getitem: # if getitem->slice were called, Indexable produces # a Slice object from that assert isinstance(obj, int) return expression.BindParameter( None, obj, _compared_to_operator=operator, type_=type_, _compared_to_type=self.type, unique=True, ) else: return array( [ self._bind_param( operator, o, _assume_scalar=True, type_=type_ ) for o in obj ] ) def self_group(self, against=None): if against in (operators.any_op, operators.all_op, operators.getitem): return expression.Grouping(self) else: return self CONTAINS = operators.custom_op("@>", precedence=5) CONTAINED_BY = operators.custom_op("<@", precedence=5) OVERLAP = operators.custom_op("&&", precedence=5) class ARRAY(sqltypes.ARRAY): """PostgreSQL ARRAY type. .. versionchanged:: 1.1 The :class:`.postgresql.ARRAY` type is now a subclass of the core :class:`.types.ARRAY` type. The :class:`.postgresql.ARRAY` type is constructed in the same way as the core :class:`.types.ARRAY` type; a member type is required, and a number of dimensions is recommended if the type is to be used for more than one dimension:: from sqlalchemy.dialects import postgresql mytable = Table("mytable", metadata, Column("data", postgresql.ARRAY(Integer, dimensions=2)) ) The :class:`.postgresql.ARRAY` type provides all operations defined on the core :class:`.types.ARRAY` type, including support for "dimensions", indexed access, and simple matching such as :meth:`.types.ARRAY.Comparator.any` and :meth:`.types.ARRAY.Comparator.all`. :class:`.postgresql.ARRAY` class also provides PostgreSQL-specific methods for containment operations, including :meth:`.postgresql.ARRAY.Comparator.contains` :meth:`.postgresql.ARRAY.Comparator.contained_by`, and :meth:`.postgresql.ARRAY.Comparator.overlap`, e.g.:: mytable.c.data.contains([1, 2]) The :class:`.postgresql.ARRAY` type may not be supported on all PostgreSQL DBAPIs; it is currently known to work on psycopg2 only. Additionally, the :class:`.postgresql.ARRAY` type does not work directly in conjunction with the :class:`.ENUM` type. For a workaround, see the special type at :ref:`postgresql_array_of_enum`. .. seealso:: :class:`.types.ARRAY` - base array type :class:`.postgresql.array` - produces a literal array value. """ class Comparator(sqltypes.ARRAY.Comparator): """Define comparison operations for :class:`.ARRAY`. Note that these operations are in addition to those provided by the base :class:`.types.ARRAY.Comparator` class, including :meth:`.types.ARRAY.Comparator.any` and :meth:`.types.ARRAY.Comparator.all`. """ def contains(self, other, **kwargs): """Boolean expression. Test if elements are a superset of the elements of the argument array expression. """ return self.operate(CONTAINS, other, result_type=sqltypes.Boolean) def contained_by(self, other): """Boolean expression. Test if elements are a proper subset of the elements of the argument array expression. """ return self.operate( CONTAINED_BY, other, result_type=sqltypes.Boolean ) def overlap(self, other): """Boolean expression. Test if array has elements in common with an argument array expression. """ return self.operate(OVERLAP, other, result_type=sqltypes.Boolean) comparator_factory = Comparator def __init__( self, item_type, as_tuple=False, dimensions=None, zero_indexes=False ): """Construct an ARRAY. E.g.:: Column('myarray', ARRAY(Integer)) Arguments are: :param item_type: The data type of items of this array. Note that dimensionality is irrelevant here, so multi-dimensional arrays like ``INTEGER[][]``, are constructed as ``ARRAY(Integer)``, not as ``ARRAY(ARRAY(Integer))`` or such. :param as_tuple=False: Specify whether return results should be converted to tuples from lists. DBAPIs such as psycopg2 return lists by default. When tuples are returned, the results are hashable. :param dimensions: if non-None, the ARRAY will assume a fixed number of dimensions. This will cause the DDL emitted for this ARRAY to include the exact number of bracket clauses ``[]``, and will also optimize the performance of the type overall. Note that PG arrays are always implicitly "non-dimensioned", meaning they can store any number of dimensions no matter how they were declared. :param zero_indexes=False: when True, index values will be converted between Python zero-based and PostgreSQL one-based indexes, e.g. a value of one will be added to all index values before passing to the database. .. versionadded:: 0.9.5 """ if isinstance(item_type, ARRAY): raise ValueError( "Do not nest ARRAY types; ARRAY(basetype) " "handles multi-dimensional arrays of basetype" ) if isinstance(item_type, type): item_type = item_type() self.item_type = item_type self.as_tuple = as_tuple self.dimensions = dimensions self.zero_indexes = zero_indexes @property def hashable(self): return self.as_tuple @property def python_type(self): return list def compare_values(self, x, y): return x == y def _proc_array(self, arr, itemproc, dim, collection): if dim is None: arr = list(arr) if ( dim == 1 or dim is None and ( # this has to be (list, tuple), or at least # not hasattr('__iter__'), since Py3K strings # etc. have __iter__ not arr or not isinstance(arr[0], (list, tuple)) ) ): if itemproc: return collection(itemproc(x) for x in arr) else: return collection(arr) else: return collection( self._proc_array( x, itemproc, dim - 1 if dim is not None else None, collection, ) for x in arr ) def bind_processor(self, dialect): item_proc = self.item_type.dialect_impl(dialect).bind_processor( dialect ) def process(value): if value is None: return value else: return self._proc_array( value, item_proc, self.dimensions, list ) return process def result_processor(self, dialect, coltype): item_proc = self.item_type.dialect_impl(dialect).result_processor( dialect, coltype ) def process(value): if value is None: return value else: return self._proc_array( value, item_proc, self.dimensions, tuple if self.as_tuple else list, ) return process colspecs[sqltypes.ARRAY] = ARRAY ischema_names["_array"] = ARRAY