%PDF- %PDF-
Direktori : /opt/cloudlinux/venv/lib/python3.11/site-packages/astroid/brain/ |
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/astroid/brain/brain_numpy_core_numeric.py |
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/main/LICENSE # Copyright (c) https://github.com/PyCQA/astroid/blob/main/CONTRIBUTORS.txt """Astroid hooks for numpy.core.numeric module.""" import functools from astroid.brain.brain_numpy_utils import infer_numpy_member, looks_like_numpy_member from astroid.brain.helpers import register_module_extender from astroid.builder import parse from astroid.inference_tip import inference_tip from astroid.manager import AstroidManager from astroid.nodes.node_classes import Attribute def numpy_core_numeric_transform(): return parse( """ # different functions defined in numeric.py import numpy def zeros_like(a, dtype=None, order='K', subok=True, shape=None): return numpy.ndarray((0, 0)) def ones_like(a, dtype=None, order='K', subok=True, shape=None): return numpy.ndarray((0, 0)) def full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None): return numpy.ndarray((0, 0)) """ ) register_module_extender( AstroidManager(), "numpy.core.numeric", numpy_core_numeric_transform ) METHODS_TO_BE_INFERRED = { "ones": """def ones(shape, dtype=None, order='C'): return numpy.ndarray([0, 0])""" } for method_name, function_src in METHODS_TO_BE_INFERRED.items(): inference_function = functools.partial(infer_numpy_member, function_src) AstroidManager().register_transform( Attribute, inference_tip(inference_function), functools.partial(looks_like_numpy_member, method_name), )