%PDF- %PDF-
Direktori : /opt/cloudlinux/venv/lib/python3.11/site-packages/prometheus_client/ |
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/prometheus_client/multiprocess.py |
from __future__ import unicode_literals from collections import defaultdict import glob import json import os from .metrics_core import Metric from .mmap_dict import MmapedDict from .samples import Sample from .utils import floatToGoString try: # Python3 FileNotFoundError except NameError: # Python >= 2.5 FileNotFoundError = IOError MP_METRIC_HELP = 'Multiprocess metric' class MultiProcessCollector(object): """Collector for files for multi-process mode.""" def __init__(self, registry, path=None): if path is None: path = os.environ.get('prometheus_multiproc_dir') if not path or not os.path.isdir(path): raise ValueError('env prometheus_multiproc_dir is not set or not a directory') self._path = path if registry: registry.register(self) @staticmethod def merge(files, accumulate=True): """Merge metrics from given mmap files. By default, histograms are accumulated, as per prometheus wire format. But if writing the merged data back to mmap files, use accumulate=False to avoid compound accumulation. """ metrics = MultiProcessCollector._read_metrics(files) return MultiProcessCollector._accumulate_metrics(metrics, accumulate) @staticmethod def _read_metrics(files): metrics = {} key_cache = {} def _parse_key(key): val = key_cache.get(key) if not val: metric_name, name, labels = json.loads(key) labels_key = tuple(sorted(labels.items())) val = key_cache[key] = (metric_name, name, labels, labels_key) return val for f in files: parts = os.path.basename(f).split('_') typ = parts[0] try: file_values = MmapedDict.read_all_values_from_file(f) except FileNotFoundError: if typ == 'gauge' and parts[1] in ('liveall', 'livesum'): # Those files can disappear between the glob of collect # and now (via a mark_process_dead call) so don't fail if # the file is missing continue raise for key, value, pos in file_values: metric_name, name, labels, labels_key = _parse_key(key) metric = metrics.get(metric_name) if metric is None: metric = Metric(metric_name, MP_METRIC_HELP, typ) metrics[metric_name] = metric if typ == 'gauge': pid = parts[2][:-3] metric._multiprocess_mode = parts[1] metric.add_sample(name, labels_key + (('pid', pid),), value) else: # The duplicates and labels are fixed in the next for. metric.add_sample(name, labels_key, value) return metrics @staticmethod def _accumulate_metrics(metrics, accumulate): for metric in metrics.values(): samples = defaultdict(float) buckets = defaultdict(lambda: defaultdict(float)) samples_setdefault = samples.setdefault for s in metric.samples: name, labels, value, timestamp, exemplar = s if metric.type == 'gauge': without_pid_key = (name, tuple([l for l in labels if l[0] != 'pid'])) if metric._multiprocess_mode == 'min': current = samples_setdefault(without_pid_key, value) if value < current: samples[without_pid_key] = value elif metric._multiprocess_mode == 'max': current = samples_setdefault(without_pid_key, value) if value > current: samples[without_pid_key] = value elif metric._multiprocess_mode == 'livesum': samples[without_pid_key] += value else: # all/liveall samples[(name, labels)] = value elif metric.type == 'histogram': # A for loop with early exit is faster than a genexpr # or a listcomp that ends up building unnecessary things for l in labels: if l[0] == 'le': bucket_value = float(l[1]) # _bucket without_le = tuple(l for l in labels if l[0] != 'le') buckets[without_le][bucket_value] += value break else: # did not find the `le` key # _sum/_count samples[(name, labels)] += value else: # Counter and Summary. samples[(name, labels)] += value # Accumulate bucket values. if metric.type == 'histogram': for labels, values in buckets.items(): acc = 0.0 for bucket, value in sorted(values.items()): sample_key = ( metric.name + '_bucket', labels + (('le', floatToGoString(bucket)),), ) if accumulate: acc += value samples[sample_key] = acc else: samples[sample_key] = value if accumulate: samples[(metric.name + '_count', labels)] = acc # Convert to correct sample format. metric.samples = [Sample(name_, dict(labels), value) for (name_, labels), value in samples.items()] return metrics.values() def collect(self): files = glob.glob(os.path.join(self._path, '*.db')) return self.merge(files, accumulate=True) def mark_process_dead(pid, path=None): """Do bookkeeping for when one process dies in a multi-process setup.""" if path is None: path = os.environ.get('prometheus_multiproc_dir') for f in glob.glob(os.path.join(path, 'gauge_livesum_{0}.db'.format(pid))): os.remove(f) for f in glob.glob(os.path.join(path, 'gauge_liveall_{0}.db'.format(pid))): os.remove(f)