%PDF- %PDF-
Direktori : /opt/cloudlinux/venv/lib/python3.11/site-packages/pylint/checkers/base/name_checker/ |
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/pylint/checkers/base/name_checker/checker.py |
# Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html # For details: https://github.com/PyCQA/pylint/blob/main/LICENSE # Copyright (c) https://github.com/PyCQA/pylint/blob/main/CONTRIBUTORS.txt """Basic checker for Python code.""" from __future__ import annotations import argparse import collections import itertools import re import sys from collections.abc import Iterable from enum import Enum, auto from re import Pattern from typing import TYPE_CHECKING, Tuple import astroid from astroid import nodes from pylint import constants, interfaces from pylint.checkers import utils from pylint.checkers.base.basic_checker import _BasicChecker from pylint.checkers.base.name_checker.naming_style import ( KNOWN_NAME_TYPES, KNOWN_NAME_TYPES_WITH_STYLE, NAMING_STYLES, _create_naming_options, ) from pylint.checkers.utils import is_property_deleter, is_property_setter from pylint.typing import Options if TYPE_CHECKING: from pylint.lint.pylinter import PyLinter _BadNamesTuple = Tuple[nodes.NodeNG, str, str, interfaces.Confidence] # Default patterns for name types that do not have styles DEFAULT_PATTERNS = { "typevar": re.compile( r"^_{0,2}(?!T[A-Z])(?:[A-Z]+|(?:[A-Z]+[a-z]+)+T?(?<!Type))(?:_co(?:ntra)?)?$" ), "typealias": re.compile( r"^_{0,2}(?!T[A-Z]|Type)[A-Z]+[a-z0-9]+(?:[A-Z][a-z0-9]+)*$" ), } BUILTIN_PROPERTY = "builtins.property" TYPE_VAR_QNAME = frozenset( ( "typing.TypeVar", "typing_extensions.TypeVar", ) ) class TypeVarVariance(Enum): invariant = auto() covariant = auto() contravariant = auto() double_variant = auto() def _get_properties(config: argparse.Namespace) -> tuple[set[str], set[str]]: """Returns a tuple of property classes and names. Property classes are fully qualified, such as 'abc.abstractproperty' and property names are the actual names, such as 'abstract_property'. """ property_classes = {BUILTIN_PROPERTY} property_names: set[str] = set() # Not returning 'property', it has its own check. if config is not None: property_classes.update(config.property_classes) property_names.update( prop.rsplit(".", 1)[-1] for prop in config.property_classes ) return property_classes, property_names def _redefines_import(node: nodes.AssignName) -> bool: """Detect that the given node (AssignName) is inside an exception handler and redefines an import from the tryexcept body. Returns True if the node redefines an import, False otherwise. """ current = node while current and not isinstance(current.parent, nodes.ExceptHandler): current = current.parent if not current or not utils.error_of_type(current.parent, ImportError): return False try_block = current.parent.parent for import_node in try_block.nodes_of_class((nodes.ImportFrom, nodes.Import)): for name, alias in import_node.names: if alias: if alias == node.name: return True elif name == node.name: return True return False def _determine_function_name_type( node: nodes.FunctionDef, config: argparse.Namespace ) -> str: """Determine the name type whose regex the function's name should match. :param node: A function node. :param config: Configuration from which to pull additional property classes. :returns: One of ('function', 'method', 'attr') """ property_classes, property_names = _get_properties(config) if not node.is_method(): return "function" if is_property_setter(node) or is_property_deleter(node): # If the function is decorated using the prop_method.{setter,getter} # form, treat it like an attribute as well. return "attr" decorators = node.decorators.nodes if node.decorators else [] for decorator in decorators: # If the function is a property (decorated with @property # or @abc.abstractproperty), the name type is 'attr'. if isinstance(decorator, nodes.Name) or ( isinstance(decorator, nodes.Attribute) and decorator.attrname in property_names ): inferred = utils.safe_infer(decorator) if ( inferred and hasattr(inferred, "qname") and inferred.qname() in property_classes ): return "attr" return "method" # Name categories that are always consistent with all naming conventions. EXEMPT_NAME_CATEGORIES = {"exempt", "ignore"} def _is_multi_naming_match( match: re.Match[str] | None, node_type: str, confidence: interfaces.Confidence ) -> bool: return ( match is not None and match.lastgroup is not None and match.lastgroup not in EXEMPT_NAME_CATEGORIES and (node_type != "method" or confidence != interfaces.INFERENCE_FAILURE) ) class NameChecker(_BasicChecker): msgs = { "C0103": ( '%s name "%s" doesn\'t conform to %s', "invalid-name", "Used when the name doesn't conform to naming rules " "associated to its type (constant, variable, class...).", ), "C0104": ( 'Disallowed name "%s"', "disallowed-name", "Used when the name matches bad-names or bad-names-rgxs- (unauthorized names).", { "old_names": [ ("C0102", "blacklisted-name"), ] }, ), "C0105": ( "Type variable name does not reflect variance%s", "typevar-name-incorrect-variance", "Emitted when a TypeVar name doesn't reflect its type variance. " "According to PEP8, it is recommended to add suffixes '_co' and " "'_contra' to the variables used to declare covariant or " "contravariant behaviour respectively. Invariant (default) variables " "do not require a suffix. The message is also emitted when invariant " "variables do have a suffix.", ), "C0131": ( "TypeVar cannot be both covariant and contravariant", "typevar-double-variance", 'Emitted when both the "covariant" and "contravariant" ' 'keyword arguments are set to "True" in a TypeVar.', ), "C0132": ( 'TypeVar name "%s" does not match assigned variable name "%s"', "typevar-name-mismatch", "Emitted when a TypeVar is assigned to a variable " "that does not match its name argument.", ), } _options: Options = ( ( "good-names", { "default": ("i", "j", "k", "ex", "Run", "_"), "type": "csv", "metavar": "<names>", "help": "Good variable names which should always be accepted," " separated by a comma.", }, ), ( "good-names-rgxs", { "default": "", "type": "regexp_csv", "metavar": "<names>", "help": "Good variable names regexes, separated by a comma. If names match any regex," " they will always be accepted", }, ), ( "bad-names", { "default": ("foo", "bar", "baz", "toto", "tutu", "tata"), "type": "csv", "metavar": "<names>", "help": "Bad variable names which should always be refused, " "separated by a comma.", }, ), ( "bad-names-rgxs", { "default": "", "type": "regexp_csv", "metavar": "<names>", "help": "Bad variable names regexes, separated by a comma. If names match any regex," " they will always be refused", }, ), ( "name-group", { "default": (), "type": "csv", "metavar": "<name1:name2>", "help": ( "Colon-delimited sets of names that determine each" " other's naming style when the name regexes" " allow several styles." ), }, ), ( "include-naming-hint", { "default": False, "type": "yn", "metavar": "<y or n>", "help": "Include a hint for the correct naming format with invalid-name.", }, ), ( "property-classes", { "default": ("abc.abstractproperty",), "type": "csv", "metavar": "<decorator names>", "help": "List of decorators that produce properties, such as " "abc.abstractproperty. Add to this list to register " "other decorators that produce valid properties. " "These decorators are taken in consideration only for invalid-name.", }, ), ) options: Options = _options + _create_naming_options() def __init__(self, linter: PyLinter) -> None: super().__init__(linter) self._name_group: dict[str, str] = {} self._bad_names: dict[str, dict[str, list[_BadNamesTuple]]] = {} self._name_regexps: dict[str, re.Pattern[str]] = {} self._name_hints: dict[str, str] = {} self._good_names_rgxs_compiled: list[re.Pattern[str]] = [] self._bad_names_rgxs_compiled: list[re.Pattern[str]] = [] def open(self) -> None: self.linter.stats.reset_bad_names() for group in self.linter.config.name_group: for name_type in group.split(":"): self._name_group[name_type] = f"group_{group}" regexps, hints = self._create_naming_rules() self._name_regexps = regexps self._name_hints = hints self._good_names_rgxs_compiled = [ re.compile(rgxp) for rgxp in self.linter.config.good_names_rgxs ] self._bad_names_rgxs_compiled = [ re.compile(rgxp) for rgxp in self.linter.config.bad_names_rgxs ] def _create_naming_rules(self) -> tuple[dict[str, Pattern[str]], dict[str, str]]: regexps: dict[str, Pattern[str]] = {} hints: dict[str, str] = {} for name_type in KNOWN_NAME_TYPES: if name_type in KNOWN_NAME_TYPES_WITH_STYLE: naming_style_name = getattr( self.linter.config, f"{name_type}_naming_style" ) regexps[name_type] = NAMING_STYLES[naming_style_name].get_regex( name_type ) else: naming_style_name = "predefined" regexps[name_type] = DEFAULT_PATTERNS[name_type] custom_regex_setting_name = f"{name_type}_rgx" custom_regex = getattr(self.linter.config, custom_regex_setting_name, None) if custom_regex is not None: regexps[name_type] = custom_regex if custom_regex is not None: hints[name_type] = f"{custom_regex.pattern!r} pattern" else: hints[name_type] = f"{naming_style_name} naming style" return regexps, hints @utils.only_required_for_messages("disallowed-name", "invalid-name") def visit_module(self, node: nodes.Module) -> None: self._check_name("module", node.name.split(".")[-1], node) self._bad_names = {} def leave_module(self, _: nodes.Module) -> None: for all_groups in self._bad_names.values(): if len(all_groups) < 2: continue groups: collections.defaultdict[ int, list[list[_BadNamesTuple]] ] = collections.defaultdict(list) min_warnings = sys.maxsize prevalent_group, _ = max(all_groups.items(), key=lambda item: len(item[1])) for group in all_groups.values(): groups[len(group)].append(group) min_warnings = min(len(group), min_warnings) if len(groups[min_warnings]) > 1: by_line = sorted( groups[min_warnings], key=lambda group: min( # type: ignore[no-any-return] warning[0].lineno for warning in group if warning[0].lineno is not None ), ) warnings: Iterable[_BadNamesTuple] = itertools.chain(*by_line[1:]) else: warnings = groups[min_warnings][0] for args in warnings: self._raise_name_warning(prevalent_group, *args) @utils.only_required_for_messages("disallowed-name", "invalid-name") def visit_classdef(self, node: nodes.ClassDef) -> None: self._check_name("class", node.name, node) for attr, anodes in node.instance_attrs.items(): if not any(node.instance_attr_ancestors(attr)): self._check_name("attr", attr, anodes[0]) @utils.only_required_for_messages("disallowed-name", "invalid-name") def visit_functiondef(self, node: nodes.FunctionDef) -> None: # Do not emit any warnings if the method is just an implementation # of a base class method. confidence = interfaces.HIGH if node.is_method(): if utils.overrides_a_method(node.parent.frame(future=True), node.name): return confidence = ( interfaces.INFERENCE if utils.has_known_bases(node.parent.frame(future=True)) else interfaces.INFERENCE_FAILURE ) self._check_name( _determine_function_name_type(node, config=self.linter.config), node.name, node, confidence, ) # Check argument names args = node.args.args if args is not None: self._recursive_check_names(args) visit_asyncfunctiondef = visit_functiondef @utils.only_required_for_messages( "disallowed-name", "invalid-name", "typevar-name-incorrect-variance", "typevar-double-variance", "typevar-name-mismatch", ) def visit_assignname( # pylint: disable=too-many-branches self, node: nodes.AssignName ) -> None: """Check module level assigned names.""" frame = node.frame(future=True) assign_type = node.assign_type() # Check names defined in comprehensions if isinstance(assign_type, nodes.Comprehension): self._check_name("inlinevar", node.name, node) # Check names defined in module scope elif isinstance(frame, nodes.Module): # Check names defined in Assign nodes if isinstance(assign_type, nodes.Assign): inferred_assign_type = utils.safe_infer(assign_type.value) # Check TypeVar's and TypeAliases assigned alone or in tuple assignment if isinstance(node.parent, nodes.Assign): if self._assigns_typevar(assign_type.value): self._check_name("typevar", assign_type.targets[0].name, node) return if self._assigns_typealias(assign_type.value): self._check_name("typealias", assign_type.targets[0].name, node) return if ( isinstance(node.parent, nodes.Tuple) and isinstance(assign_type.value, nodes.Tuple) # protect against unbalanced tuple unpacking and node.parent.elts.index(node) < len(assign_type.value.elts) ): assigner = assign_type.value.elts[node.parent.elts.index(node)] if self._assigns_typevar(assigner): self._check_name( "typevar", assign_type.targets[0] .elts[node.parent.elts.index(node)] .name, node, ) return if self._assigns_typealias(assigner): self._check_name( "typealias", assign_type.targets[0] .elts[node.parent.elts.index(node)] .name, node, ) return # Check classes (TypeVar's are classes so they need to be excluded first) elif isinstance(inferred_assign_type, nodes.ClassDef): self._check_name("class", node.name, node) # Don't emit if the name redefines an import in an ImportError except handler. elif not _redefines_import(node) and isinstance( inferred_assign_type, nodes.Const ): self._check_name("const", node.name, node) else: self._check_name( "variable", node.name, node, disallowed_check_only=True ) # Check names defined in AnnAssign nodes elif isinstance(assign_type, nodes.AnnAssign): if utils.is_assign_name_annotated_with(node, "Final"): self._check_name("const", node.name, node) elif self._assigns_typealias(assign_type.annotation): self._check_name("typealias", node.name, node) # Check names defined in function scopes elif isinstance(frame, nodes.FunctionDef): # global introduced variable aren't in the function locals if node.name in frame and node.name not in frame.argnames(): if not _redefines_import(node): self._check_name("variable", node.name, node) # Check names defined in class scopes elif isinstance(frame, nodes.ClassDef): if not list(frame.local_attr_ancestors(node.name)): for ancestor in frame.ancestors(): if utils.is_enum(ancestor) or utils.is_assign_name_annotated_with( node, "Final" ): self._check_name("class_const", node.name, node) break else: self._check_name("class_attribute", node.name, node) def _recursive_check_names(self, args: list[nodes.AssignName]) -> None: """Check names in a possibly recursive list <arg>.""" for arg in args: self._check_name("argument", arg.name, arg) def _find_name_group(self, node_type: str) -> str: return self._name_group.get(node_type, node_type) def _raise_name_warning( self, prevalent_group: str | None, node: nodes.NodeNG, node_type: str, name: str, confidence: interfaces.Confidence, warning: str = "invalid-name", ) -> None: type_label = constants.HUMAN_READABLE_TYPES[node_type] hint = self._name_hints[node_type] if prevalent_group: # This happens in the multi naming match case. The expected # prevalent group needs to be spelled out to make the message # correct. hint = f"the `{prevalent_group}` group in the {hint}" if self.linter.config.include_naming_hint: hint += f" ({self._name_regexps[node_type].pattern!r} pattern)" args = ( (type_label.capitalize(), name, hint) if warning == "invalid-name" else (type_label.capitalize(), name) ) self.add_message(warning, node=node, args=args, confidence=confidence) self.linter.stats.increase_bad_name(node_type, 1) def _name_allowed_by_regex(self, name: str) -> bool: return name in self.linter.config.good_names or any( pattern.match(name) for pattern in self._good_names_rgxs_compiled ) def _name_disallowed_by_regex(self, name: str) -> bool: return name in self.linter.config.bad_names or any( pattern.match(name) for pattern in self._bad_names_rgxs_compiled ) def _check_name( self, node_type: str, name: str, node: nodes.NodeNG, confidence: interfaces.Confidence = interfaces.HIGH, disallowed_check_only: bool = False, ) -> None: """Check for a name using the type's regexp.""" def _should_exempt_from_invalid_name(node: nodes.NodeNG) -> bool: if node_type == "variable": inferred = utils.safe_infer(node) if isinstance(inferred, nodes.ClassDef): return True return False if self._name_allowed_by_regex(name=name): return if self._name_disallowed_by_regex(name=name): self.linter.stats.increase_bad_name(node_type, 1) self.add_message( "disallowed-name", node=node, args=name, confidence=interfaces.HIGH ) return regexp = self._name_regexps[node_type] match = regexp.match(name) if _is_multi_naming_match(match, node_type, confidence): name_group = self._find_name_group(node_type) bad_name_group = self._bad_names.setdefault(name_group, {}) # Ignored because this is checked by the if statement warnings = bad_name_group.setdefault(match.lastgroup, []) # type: ignore[union-attr, arg-type] warnings.append((node, node_type, name, confidence)) if ( match is None and not disallowed_check_only and not _should_exempt_from_invalid_name(node) ): self._raise_name_warning(None, node, node_type, name, confidence) # Check TypeVar names for variance suffixes if node_type == "typevar": self._check_typevar(name, node) @staticmethod def _assigns_typevar(node: nodes.NodeNG | None) -> bool: """Check if a node is assigning a TypeVar.""" if isinstance(node, astroid.Call): inferred = utils.safe_infer(node.func) if ( isinstance(inferred, astroid.ClassDef) and inferred.qname() in TYPE_VAR_QNAME ): return True return False @staticmethod def _assigns_typealias(node: nodes.NodeNG | None) -> bool: """Check if a node is assigning a TypeAlias.""" inferred = utils.safe_infer(node) if isinstance(inferred, nodes.ClassDef): if inferred.qname() == ".Union": # Union is a special case because it can be used as a type alias # or as a type annotation. We only want to check the former. assert node is not None return not isinstance(node.parent, nodes.AnnAssign) elif isinstance(inferred, nodes.FunctionDef): if inferred.qname() == "typing.TypeAlias": return True return False def _check_typevar(self, name: str, node: nodes.AssignName) -> None: """Check for TypeVar lint violations.""" if isinstance(node.parent, nodes.Assign): keywords = node.assign_type().value.keywords args = node.assign_type().value.args elif isinstance(node.parent, nodes.Tuple): keywords = ( node.assign_type().value.elts[node.parent.elts.index(node)].keywords ) args = node.assign_type().value.elts[node.parent.elts.index(node)].args variance = TypeVarVariance.invariant name_arg = None for kw in keywords: if variance == TypeVarVariance.double_variant: pass elif kw.arg == "covariant" and kw.value.value: variance = ( TypeVarVariance.covariant if variance != TypeVarVariance.contravariant else TypeVarVariance.double_variant ) elif kw.arg == "contravariant" and kw.value.value: variance = ( TypeVarVariance.contravariant if variance != TypeVarVariance.covariant else TypeVarVariance.double_variant ) if kw.arg == "name" and isinstance(kw.value, nodes.Const): name_arg = kw.value.value if name_arg is None and args and isinstance(args[0], nodes.Const): name_arg = args[0].value if variance == TypeVarVariance.double_variant: self.add_message( "typevar-double-variance", node=node, confidence=interfaces.INFERENCE, ) self.add_message( "typevar-name-incorrect-variance", node=node, args=("",), confidence=interfaces.INFERENCE, ) elif variance == TypeVarVariance.covariant and not name.endswith("_co"): suggest_name = f"{re.sub('_contra$', '', name)}_co" self.add_message( "typevar-name-incorrect-variance", node=node, args=(f'. "{name}" is covariant, use "{suggest_name}" instead'), confidence=interfaces.INFERENCE, ) elif variance == TypeVarVariance.contravariant and not name.endswith("_contra"): suggest_name = f"{re.sub('_co$', '', name)}_contra" self.add_message( "typevar-name-incorrect-variance", node=node, args=(f'. "{name}" is contravariant, use "{suggest_name}" instead'), confidence=interfaces.INFERENCE, ) elif variance == TypeVarVariance.invariant and ( name.endswith("_co") or name.endswith("_contra") ): suggest_name = re.sub("_contra$|_co$", "", name) self.add_message( "typevar-name-incorrect-variance", node=node, args=(f'. "{name}" is invariant, use "{suggest_name}" instead'), confidence=interfaces.INFERENCE, ) if name_arg is not None and name_arg != name: self.add_message( "typevar-name-mismatch", node=node, args=(name_arg, name), confidence=interfaces.INFERENCE, )