%PDF- %PDF-
Direktori : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/_typing/ |
Current File : //opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/_typing/_array_like.py |
from __future__ import annotations from collections.abc import Collection, Callable, Sequence from typing import Any, Protocol, Union, TypeVar, runtime_checkable from numpy import ( ndarray, dtype, generic, bool_, unsignedinteger, integer, floating, complexfloating, number, timedelta64, datetime64, object_, void, str_, bytes_, ) from ._nested_sequence import _NestedSequence _T = TypeVar("_T") _ScalarType = TypeVar("_ScalarType", bound=generic) _ScalarType_co = TypeVar("_ScalarType_co", bound=generic, covariant=True) _DType = TypeVar("_DType", bound=dtype[Any]) _DType_co = TypeVar("_DType_co", covariant=True, bound=dtype[Any]) NDArray = ndarray[Any, dtype[_ScalarType_co]] # The `_SupportsArray` protocol only cares about the default dtype # (i.e. `dtype=None` or no `dtype` parameter at all) of the to-be returned # array. # Concrete implementations of the protocol are responsible for adding # any and all remaining overloads @runtime_checkable class _SupportsArray(Protocol[_DType_co]): def __array__(self) -> ndarray[Any, _DType_co]: ... @runtime_checkable class _SupportsArrayFunc(Protocol): """A protocol class representing `~class.__array_function__`.""" def __array_function__( self, func: Callable[..., Any], types: Collection[type[Any]], args: tuple[Any, ...], kwargs: dict[str, Any], ) -> object: ... # TODO: Wait until mypy supports recursive objects in combination with typevars _FiniteNestedSequence = Union[ _T, Sequence[_T], Sequence[Sequence[_T]], Sequence[Sequence[Sequence[_T]]], Sequence[Sequence[Sequence[Sequence[_T]]]], ] # A subset of `npt.ArrayLike` that can be parametrized w.r.t. `np.generic` _ArrayLike = Union[ _SupportsArray[dtype[_ScalarType]], _NestedSequence[_SupportsArray[dtype[_ScalarType]]], ] # A union representing array-like objects; consists of two typevars: # One representing types that can be parametrized w.r.t. `np.dtype` # and another one for the rest _DualArrayLike = Union[ _SupportsArray[_DType], _NestedSequence[_SupportsArray[_DType]], _T, _NestedSequence[_T], ] # TODO: support buffer protocols once # # https://bugs.python.org/issue27501 # # is resolved. See also the mypy issue: # # https://github.com/python/typing/issues/593 ArrayLike = _DualArrayLike[ dtype[Any], Union[bool, int, float, complex, str, bytes], ] # `ArrayLike<X>_co`: array-like objects that can be coerced into `X` # given the casting rules `same_kind` _ArrayLikeBool_co = _DualArrayLike[ dtype[bool_], bool, ] _ArrayLikeUInt_co = _DualArrayLike[ dtype[Union[bool_, unsignedinteger[Any]]], bool, ] _ArrayLikeInt_co = _DualArrayLike[ dtype[Union[bool_, integer[Any]]], Union[bool, int], ] _ArrayLikeFloat_co = _DualArrayLike[ dtype[Union[bool_, integer[Any], floating[Any]]], Union[bool, int, float], ] _ArrayLikeComplex_co = _DualArrayLike[ dtype[Union[ bool_, integer[Any], floating[Any], complexfloating[Any, Any], ]], Union[bool, int, float, complex], ] _ArrayLikeNumber_co = _DualArrayLike[ dtype[Union[bool_, number[Any]]], Union[bool, int, float, complex], ] _ArrayLikeTD64_co = _DualArrayLike[ dtype[Union[bool_, integer[Any], timedelta64]], Union[bool, int], ] _ArrayLikeDT64_co = Union[ _SupportsArray[dtype[datetime64]], _NestedSequence[_SupportsArray[dtype[datetime64]]], ] _ArrayLikeObject_co = Union[ _SupportsArray[dtype[object_]], _NestedSequence[_SupportsArray[dtype[object_]]], ] _ArrayLikeVoid_co = Union[ _SupportsArray[dtype[void]], _NestedSequence[_SupportsArray[dtype[void]]], ] _ArrayLikeStr_co = _DualArrayLike[ dtype[str_], str, ] _ArrayLikeBytes_co = _DualArrayLike[ dtype[bytes_], bytes, ] _ArrayLikeInt = _DualArrayLike[ dtype[integer[Any]], int, ] # Extra ArrayLike type so that pyright can deal with NDArray[Any] # Used as the first overload, should only match NDArray[Any], # not any actual types. # https://github.com/numpy/numpy/pull/22193 class _UnknownType: ... _ArrayLikeUnknown = _DualArrayLike[ dtype[_UnknownType], _UnknownType, ]