%PDF- %PDF-
Direktori : /proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/core/ |
Current File : //proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/core/getlimits.py |
"""Machine limits for Float32 and Float64 and (long double) if available... """ from __future__ import division, absolute_import, print_function __all__ = ['finfo', 'iinfo'] import warnings from .machar import MachAr from . import numeric from . import numerictypes as ntypes from .numeric import array, inf from .umath import log10, exp2 from . import umath def _fr0(a): """fix rank-0 --> rank-1""" if a.ndim == 0: a = a.copy() a.shape = (1,) return a def _fr1(a): """fix rank > 0 --> rank-0""" if a.size == 1: a = a.copy() a.shape = () return a _convert_to_float = { ntypes.csingle: ntypes.single, ntypes.complex_: ntypes.float_, ntypes.clongfloat: ntypes.longfloat } # Parameters for creating MachAr / MachAr-like objects _title_fmt = 'numpy {} precision floating point number' _MACHAR_PARAMS = { ntypes.double: dict( itype = ntypes.int64, fmt = '%24.16e', title = _title_fmt.format('double')), ntypes.single: dict( itype = ntypes.int32, fmt = '%15.7e', title = _title_fmt.format('single')), ntypes.longdouble: dict( itype = ntypes.longlong, fmt = '%s', title = _title_fmt.format('long double')), ntypes.half: dict( itype = ntypes.int16, fmt = '%12.5e', title = _title_fmt.format('half'))} class MachArLike(object): """ Object to simulate MachAr instance """ def __init__(self, ftype, **kwargs): params = _MACHAR_PARAMS[ftype] float_conv = lambda v: array([v], ftype) float_to_float = lambda v : _fr1(float_conv(v)) self._float_to_str = lambda v: (params['fmt'] % array(_fr0(v)[0], ftype)) self.title = params['title'] # Parameter types same as for discovered MachAr object. self.epsilon = self.eps = float_to_float(kwargs.pop('eps')) self.epsneg = float_to_float(kwargs.pop('epsneg')) self.xmax = self.huge = float_to_float(kwargs.pop('huge')) self.xmin = self.tiny = float_to_float(kwargs.pop('tiny')) self.ibeta = params['itype'](kwargs.pop('ibeta')) self.__dict__.update(kwargs) self.precision = int(-log10(self.eps)) self.resolution = float_to_float(float_conv(10) ** (-self.precision)) # Properties below to delay need for float_to_str, and thus avoid circular # imports during early numpy module loading. # See: https://github.com/numpy/numpy/pull/8983#discussion_r115838683 @property def _str_eps(self): return self._float_to_str(self.eps) @property def _str_epsneg(self): return self._float_to_str(self.epsneg) @property def _str_xmin(self): return self._float_to_str(self.xmin) @property def _str_xmax(self): return self._float_to_str(self.xmax) @property def _str_resolution(self): return self._float_to_str(self.resolution) # Known parameters for float16 # See docstring of MachAr class for description of parameters. _f16 = ntypes.float16 _float16_ma = MachArLike(_f16, machep=-10, negep=-11, minexp=-14, maxexp=16, it=10, iexp=5, ibeta=2, irnd=5, ngrd=0, eps=exp2(_f16(-10)), epsneg=exp2(_f16(-11)), huge=_f16(65504), tiny=_f16(2 ** -14)) # Known parameters for float32 _f32 = ntypes.float32 _float32_ma = MachArLike(_f32, machep=-23, negep=-24, minexp=-126, maxexp=128, it=23, iexp=8, ibeta=2, irnd=5, ngrd=0, eps=exp2(_f32(-23)), epsneg=exp2(_f32(-24)), huge=_f32((1 - 2 ** -24) * 2**128), tiny=exp2(_f32(-126))) # Known parameters for float64 _f64 = ntypes.float64 _epsneg_f64 = 2.0 ** -53.0 _tiny_f64 = 2.0 ** -1022.0 _float64_ma = MachArLike(_f64, machep=-52, negep=-53, minexp=-1022, maxexp=1024, it=52, iexp=11, ibeta=2, irnd=5, ngrd=0, eps=2.0 ** -52.0, epsneg=_epsneg_f64, huge=(1.0 - _epsneg_f64) / _tiny_f64 * _f64(4), tiny=_tiny_f64) # Known parameters for IEEE 754 128-bit binary float _ld = ntypes.longdouble _epsneg_f128 = exp2(_ld(-113)) _tiny_f128 = exp2(_ld(-16382)) # Ignore runtime error when this is not f128 with numeric.errstate(all='ignore'): _huge_f128 = (_ld(1) - _epsneg_f128) / _tiny_f128 * _ld(4) _float128_ma = MachArLike(_ld, machep=-112, negep=-113, minexp=-16382, maxexp=16384, it=112, iexp=15, ibeta=2, irnd=5, ngrd=0, eps=exp2(_ld(-112)), epsneg=_epsneg_f128, huge=_huge_f128, tiny=_tiny_f128) # Known parameters for float80 (Intel 80-bit extended precision) _epsneg_f80 = exp2(_ld(-64)) _tiny_f80 = exp2(_ld(-16382)) # Ignore runtime error when this is not f80 with numeric.errstate(all='ignore'): _huge_f80 = (_ld(1) - _epsneg_f80) / _tiny_f80 * _ld(4) _float80_ma = MachArLike(_ld, machep=-63, negep=-64, minexp=-16382, maxexp=16384, it=63, iexp=15, ibeta=2, irnd=5, ngrd=0, eps=exp2(_ld(-63)), epsneg=_epsneg_f80, huge=_huge_f80, tiny=_tiny_f80) # Guessed / known parameters for double double; see: # https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#Double-double_arithmetic # These numbers have the same exponent range as float64, but extended number of # digits in the significand. _huge_dd = (umath.nextafter(_ld(inf), _ld(0)) if hasattr(umath, 'nextafter') # Missing on some platforms? else _float64_ma.huge) _float_dd_ma = MachArLike(_ld, machep=-105, negep=-106, minexp=-1022, maxexp=1024, it=105, iexp=11, ibeta=2, irnd=5, ngrd=0, eps=exp2(_ld(-105)), epsneg= exp2(_ld(-106)), huge=_huge_dd, tiny=exp2(_ld(-1022))) # Key to identify the floating point type. Key is result of # ftype('-0.1').newbyteorder('<').tobytes() # See: # https://perl5.git.perl.org/perl.git/blob/3118d7d684b56cbeb702af874f4326683c45f045:/Configure _KNOWN_TYPES = { b'\x9a\x99\x99\x99\x99\x99\xb9\xbf' : _float64_ma, b'\xcd\xcc\xcc\xbd' : _float32_ma, b'f\xae' : _float16_ma, # float80, first 10 bytes containing actual storage b'\xcd\xcc\xcc\xcc\xcc\xcc\xcc\xcc\xfb\xbf' : _float80_ma, # double double; low, high order (e.g. PPC 64) b'\x9a\x99\x99\x99\x99\x99Y<\x9a\x99\x99\x99\x99\x99\xb9\xbf' : _float_dd_ma, # double double; high, low order (e.g. PPC 64 le) b'\x9a\x99\x99\x99\x99\x99\xb9\xbf\x9a\x99\x99\x99\x99\x99Y<' : _float_dd_ma, # IEEE 754 128-bit binary float b'\x9a\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\x99\xfb\xbf' : _float128_ma, } def _get_machar(ftype): """ Get MachAr instance or MachAr-like instance Get parameters for floating point type, by first trying signatures of various known floating point types, then, if none match, attempting to identify parameters by analysis. Parameters ---------- ftype : class Numpy floating point type class (e.g. ``np.float64``) Returns ------- ma_like : instance of :class:`MachAr` or :class:`MachArLike` Object giving floating point parameters for `ftype`. Warns ----- UserWarning If the binary signature of the float type is not in the dictionary of known float types. """ params = _MACHAR_PARAMS.get(ftype) if params is None: raise ValueError(repr(ftype)) # Detect known / suspected types key = ftype('-0.1').newbyteorder('<').tobytes() ma_like = _KNOWN_TYPES.get(key) # Could be 80 bit == 10 byte extended precision, where last bytes can be # random garbage. Try comparing first 10 bytes to pattern. if ma_like is None and ftype == ntypes.longdouble: ma_like = _KNOWN_TYPES.get(key[:10]) if ma_like is not None: return ma_like # Fall back to parameter discovery warnings.warn( 'Signature {} for {} does not match any known type: ' 'falling back to type probe function'.format(key, ftype), UserWarning, stacklevel=2) return _discovered_machar(ftype) def _discovered_machar(ftype): """ Create MachAr instance with found information on float types """ params = _MACHAR_PARAMS[ftype] return MachAr(lambda v: array([v], ftype), lambda v:_fr0(v.astype(params['itype']))[0], lambda v:array(_fr0(v)[0], ftype), lambda v: params['fmt'] % array(_fr0(v)[0], ftype), params['title']) class finfo(object): """ finfo(dtype) Machine limits for floating point types. Attributes ---------- bits : int The number of bits occupied by the type. eps : float The smallest representable positive number such that ``1.0 + eps != 1.0``. Type of `eps` is an appropriate floating point type. epsneg : floating point number of the appropriate type The smallest representable positive number such that ``1.0 - epsneg != 1.0``. iexp : int The number of bits in the exponent portion of the floating point representation. machar : MachAr The object which calculated these parameters and holds more detailed information. machep : int The exponent that yields `eps`. max : floating point number of the appropriate type The largest representable number. maxexp : int The smallest positive power of the base (2) that causes overflow. min : floating point number of the appropriate type The smallest representable number, typically ``-max``. minexp : int The most negative power of the base (2) consistent with there being no leading 0's in the mantissa. negep : int The exponent that yields `epsneg`. nexp : int The number of bits in the exponent including its sign and bias. nmant : int The number of bits in the mantissa. precision : int The approximate number of decimal digits to which this kind of float is precise. resolution : floating point number of the appropriate type The approximate decimal resolution of this type, i.e., ``10**-precision``. tiny : float The smallest positive usable number. Type of `tiny` is an appropriate floating point type. Parameters ---------- dtype : float, dtype, or instance Kind of floating point data-type about which to get information. See Also -------- MachAr : The implementation of the tests that produce this information. iinfo : The equivalent for integer data types. Notes ----- For developers of NumPy: do not instantiate this at the module level. The initial calculation of these parameters is expensive and negatively impacts import times. These objects are cached, so calling ``finfo()`` repeatedly inside your functions is not a problem. """ _finfo_cache = {} def __new__(cls, dtype): try: dtype = numeric.dtype(dtype) except TypeError: # In case a float instance was given dtype = numeric.dtype(type(dtype)) obj = cls._finfo_cache.get(dtype, None) if obj is not None: return obj dtypes = [dtype] newdtype = numeric.obj2sctype(dtype) if newdtype is not dtype: dtypes.append(newdtype) dtype = newdtype if not issubclass(dtype, numeric.inexact): raise ValueError("data type %r not inexact" % (dtype)) obj = cls._finfo_cache.get(dtype, None) if obj is not None: return obj if not issubclass(dtype, numeric.floating): newdtype = _convert_to_float[dtype] if newdtype is not dtype: dtypes.append(newdtype) dtype = newdtype obj = cls._finfo_cache.get(dtype, None) if obj is not None: return obj obj = object.__new__(cls)._init(dtype) for dt in dtypes: cls._finfo_cache[dt] = obj return obj def _init(self, dtype): self.dtype = numeric.dtype(dtype) machar = _get_machar(dtype) for word in ['precision', 'iexp', 'maxexp', 'minexp', 'negep', 'machep']: setattr(self, word, getattr(machar, word)) for word in ['tiny', 'resolution', 'epsneg']: setattr(self, word, getattr(machar, word).flat[0]) self.bits = self.dtype.itemsize * 8 self.max = machar.huge.flat[0] self.min = -self.max self.eps = machar.eps.flat[0] self.nexp = machar.iexp self.nmant = machar.it self.machar = machar self._str_tiny = machar._str_xmin.strip() self._str_max = machar._str_xmax.strip() self._str_epsneg = machar._str_epsneg.strip() self._str_eps = machar._str_eps.strip() self._str_resolution = machar._str_resolution.strip() return self def __str__(self): fmt = ( 'Machine parameters for %(dtype)s\n' '---------------------------------------------------------------\n' 'precision = %(precision)3s resolution = %(_str_resolution)s\n' 'machep = %(machep)6s eps = %(_str_eps)s\n' 'negep = %(negep)6s epsneg = %(_str_epsneg)s\n' 'minexp = %(minexp)6s tiny = %(_str_tiny)s\n' 'maxexp = %(maxexp)6s max = %(_str_max)s\n' 'nexp = %(nexp)6s min = -max\n' '---------------------------------------------------------------\n' ) return fmt % self.__dict__ def __repr__(self): c = self.__class__.__name__ d = self.__dict__.copy() d['klass'] = c return (("%(klass)s(resolution=%(resolution)s, min=-%(_str_max)s," " max=%(_str_max)s, dtype=%(dtype)s)") % d) class iinfo(object): """ iinfo(type) Machine limits for integer types. Attributes ---------- bits : int The number of bits occupied by the type. min : int The smallest integer expressible by the type. max : int The largest integer expressible by the type. Parameters ---------- int_type : integer type, dtype, or instance The kind of integer data type to get information about. See Also -------- finfo : The equivalent for floating point data types. Examples -------- With types: >>> ii16 = np.iinfo(np.int16) >>> ii16.min -32768 >>> ii16.max 32767 >>> ii32 = np.iinfo(np.int32) >>> ii32.min -2147483648 >>> ii32.max 2147483647 With instances: >>> ii32 = np.iinfo(np.int32(10)) >>> ii32.min -2147483648 >>> ii32.max 2147483647 """ _min_vals = {} _max_vals = {} def __init__(self, int_type): try: self.dtype = numeric.dtype(int_type) except TypeError: self.dtype = numeric.dtype(type(int_type)) self.kind = self.dtype.kind self.bits = self.dtype.itemsize * 8 self.key = "%s%d" % (self.kind, self.bits) if self.kind not in 'iu': raise ValueError("Invalid integer data type.") def min(self): """Minimum value of given dtype.""" if self.kind == 'u': return 0 else: try: val = iinfo._min_vals[self.key] except KeyError: val = int(-(1 << (self.bits-1))) iinfo._min_vals[self.key] = val return val min = property(min) def max(self): """Maximum value of given dtype.""" try: val = iinfo._max_vals[self.key] except KeyError: if self.kind == 'u': val = int((1 << self.bits) - 1) else: val = int((1 << (self.bits-1)) - 1) iinfo._max_vals[self.key] = val return val max = property(max) def __str__(self): """String representation.""" fmt = ( 'Machine parameters for %(dtype)s\n' '---------------------------------------------------------------\n' 'min = %(min)s\n' 'max = %(max)s\n' '---------------------------------------------------------------\n' ) return fmt % {'dtype': self.dtype, 'min': self.min, 'max': self.max} def __repr__(self): return "%s(min=%s, max=%s, dtype=%s)" % (self.__class__.__name__, self.min, self.max, self.dtype)