%PDF- %PDF-
Direktori : /proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/core/tests/ |
Current File : //proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/core/tests/test_nditer.py |
from __future__ import division, absolute_import, print_function import sys import warnings import numpy as np from numpy import array, arange, nditer, all from numpy.core.multiarray_tests import test_nditer_too_large from numpy.testing import ( run_module_suite, assert_, assert_equal, assert_array_equal, assert_raises, assert_warns, dec, HAS_REFCOUNT, suppress_warnings ) def iter_multi_index(i): ret = [] while not i.finished: ret.append(i.multi_index) i.iternext() return ret def iter_indices(i): ret = [] while not i.finished: ret.append(i.index) i.iternext() return ret def iter_iterindices(i): ret = [] while not i.finished: ret.append(i.iterindex) i.iternext() return ret @dec.skipif(not HAS_REFCOUNT, "python does not have sys.getrefcount") def test_iter_refcount(): # Make sure the iterator doesn't leak # Basic a = arange(6) dt = np.dtype('f4').newbyteorder() rc_a = sys.getrefcount(a) rc_dt = sys.getrefcount(dt) it = nditer(a, [], [['readwrite', 'updateifcopy']], casting='unsafe', op_dtypes=[dt]) assert_(not it.iterationneedsapi) assert_(sys.getrefcount(a) > rc_a) assert_(sys.getrefcount(dt) > rc_dt) it = None assert_equal(sys.getrefcount(a), rc_a) assert_equal(sys.getrefcount(dt), rc_dt) # With a copy a = arange(6, dtype='f4') dt = np.dtype('f4') rc_a = sys.getrefcount(a) rc_dt = sys.getrefcount(dt) it = nditer(a, [], [['readwrite']], op_dtypes=[dt]) rc2_a = sys.getrefcount(a) rc2_dt = sys.getrefcount(dt) it2 = it.copy() assert_(sys.getrefcount(a) > rc2_a) assert_(sys.getrefcount(dt) > rc2_dt) it = None assert_equal(sys.getrefcount(a), rc2_a) assert_equal(sys.getrefcount(dt), rc2_dt) it2 = None assert_equal(sys.getrefcount(a), rc_a) assert_equal(sys.getrefcount(dt), rc_dt) del it2 # avoid pyflakes unused variable warning def test_iter_best_order(): # The iterator should always find the iteration order # with increasing memory addresses # Test the ordering for 1-D to 5-D shapes for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: a = arange(np.prod(shape)) # Test each combination of positive and negative strides for dirs in range(2**len(shape)): dirs_index = [slice(None)]*len(shape) for bit in range(len(shape)): if ((2**bit) & dirs): dirs_index[bit] = slice(None, None, -1) dirs_index = tuple(dirs_index) aview = a.reshape(shape)[dirs_index] # C-order i = nditer(aview, [], [['readonly']]) assert_equal([x for x in i], a) # Fortran-order i = nditer(aview.T, [], [['readonly']]) assert_equal([x for x in i], a) # Other order if len(shape) > 2: i = nditer(aview.swapaxes(0, 1), [], [['readonly']]) assert_equal([x for x in i], a) def test_iter_c_order(): # Test forcing C order # Test the ordering for 1-D to 5-D shapes for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: a = arange(np.prod(shape)) # Test each combination of positive and negative strides for dirs in range(2**len(shape)): dirs_index = [slice(None)]*len(shape) for bit in range(len(shape)): if ((2**bit) & dirs): dirs_index[bit] = slice(None, None, -1) dirs_index = tuple(dirs_index) aview = a.reshape(shape)[dirs_index] # C-order i = nditer(aview, order='C') assert_equal([x for x in i], aview.ravel(order='C')) # Fortran-order i = nditer(aview.T, order='C') assert_equal([x for x in i], aview.T.ravel(order='C')) # Other order if len(shape) > 2: i = nditer(aview.swapaxes(0, 1), order='C') assert_equal([x for x in i], aview.swapaxes(0, 1).ravel(order='C')) def test_iter_f_order(): # Test forcing F order # Test the ordering for 1-D to 5-D shapes for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: a = arange(np.prod(shape)) # Test each combination of positive and negative strides for dirs in range(2**len(shape)): dirs_index = [slice(None)]*len(shape) for bit in range(len(shape)): if ((2**bit) & dirs): dirs_index[bit] = slice(None, None, -1) dirs_index = tuple(dirs_index) aview = a.reshape(shape)[dirs_index] # C-order i = nditer(aview, order='F') assert_equal([x for x in i], aview.ravel(order='F')) # Fortran-order i = nditer(aview.T, order='F') assert_equal([x for x in i], aview.T.ravel(order='F')) # Other order if len(shape) > 2: i = nditer(aview.swapaxes(0, 1), order='F') assert_equal([x for x in i], aview.swapaxes(0, 1).ravel(order='F')) def test_iter_c_or_f_order(): # Test forcing any contiguous (C or F) order # Test the ordering for 1-D to 5-D shapes for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: a = arange(np.prod(shape)) # Test each combination of positive and negative strides for dirs in range(2**len(shape)): dirs_index = [slice(None)]*len(shape) for bit in range(len(shape)): if ((2**bit) & dirs): dirs_index[bit] = slice(None, None, -1) dirs_index = tuple(dirs_index) aview = a.reshape(shape)[dirs_index] # C-order i = nditer(aview, order='A') assert_equal([x for x in i], aview.ravel(order='A')) # Fortran-order i = nditer(aview.T, order='A') assert_equal([x for x in i], aview.T.ravel(order='A')) # Other order if len(shape) > 2: i = nditer(aview.swapaxes(0, 1), order='A') assert_equal([x for x in i], aview.swapaxes(0, 1).ravel(order='A')) def test_iter_best_order_multi_index_1d(): # The multi-indices should be correct with any reordering a = arange(4) # 1D order i = nditer(a, ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0,), (1,), (2,), (3,)]) # 1D reversed order i = nditer(a[::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(3,), (2,), (1,), (0,)]) def test_iter_best_order_multi_index_2d(): # The multi-indices should be correct with any reordering a = arange(6) # 2D C-order i = nditer(a.reshape(2, 3), ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]) # 2D Fortran-order i = nditer(a.reshape(2, 3).copy(order='F'), ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)]) # 2D reversed C-order i = nditer(a.reshape(2, 3)[::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 0), (1, 1), (1, 2), (0, 0), (0, 1), (0, 2)]) i = nditer(a.reshape(2, 3)[:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 2), (0, 1), (0, 0), (1, 2), (1, 1), (1, 0)]) i = nditer(a.reshape(2, 3)[::-1, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 2), (1, 1), (1, 0), (0, 2), (0, 1), (0, 0)]) # 2D reversed Fortran-order i = nditer(a.reshape(2, 3).copy(order='F')[::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 0), (0, 0), (1, 1), (0, 1), (1, 2), (0, 2)]) i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 2), (1, 2), (0, 1), (1, 1), (0, 0), (1, 0)]) i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 2), (0, 2), (1, 1), (0, 1), (1, 0), (0, 0)]) def test_iter_best_order_multi_index_3d(): # The multi-indices should be correct with any reordering a = arange(12) # 3D C-order i = nditer(a.reshape(2, 3, 2), ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1)]) # 3D Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F'), ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1)]) # 3D reversed C-order i = nditer(a.reshape(2, 3, 2)[::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1), (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1)]) i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 2, 0), (0, 2, 1), (0, 1, 0), (0, 1, 1), (0, 0, 0), (0, 0, 1), (1, 2, 0), (1, 2, 1), (1, 1, 0), (1, 1, 1), (1, 0, 0), (1, 0, 1)]) i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0, 1), (0, 0, 0), (0, 1, 1), (0, 1, 0), (0, 2, 1), (0, 2, 0), (1, 0, 1), (1, 0, 0), (1, 1, 1), (1, 1, 0), (1, 2, 1), (1, 2, 0)]) # 3D reversed Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 0, 0), (0, 0, 0), (1, 1, 0), (0, 1, 0), (1, 2, 0), (0, 2, 0), (1, 0, 1), (0, 0, 1), (1, 1, 1), (0, 1, 1), (1, 2, 1), (0, 2, 1)]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 2, 0), (1, 2, 0), (0, 1, 0), (1, 1, 0), (0, 0, 0), (1, 0, 0), (0, 2, 1), (1, 2, 1), (0, 1, 1), (1, 1, 1), (0, 0, 1), (1, 0, 1)]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1), (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0)]) def test_iter_best_order_c_index_1d(): # The C index should be correct with any reordering a = arange(4) # 1D order i = nditer(a, ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3]) # 1D reversed order i = nditer(a[::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [3, 2, 1, 0]) def test_iter_best_order_c_index_2d(): # The C index should be correct with any reordering a = arange(6) # 2D C-order i = nditer(a.reshape(2, 3), ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5]) # 2D Fortran-order i = nditer(a.reshape(2, 3).copy(order='F'), ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 3, 1, 4, 2, 5]) # 2D reversed C-order i = nditer(a.reshape(2, 3)[::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [3, 4, 5, 0, 1, 2]) i = nditer(a.reshape(2, 3)[:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [2, 1, 0, 5, 4, 3]) i = nditer(a.reshape(2, 3)[::-1, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0]) # 2D reversed Fortran-order i = nditer(a.reshape(2, 3).copy(order='F')[::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [3, 0, 4, 1, 5, 2]) i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [2, 5, 1, 4, 0, 3]) i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [5, 2, 4, 1, 3, 0]) def test_iter_best_order_c_index_3d(): # The C index should be correct with any reordering a = arange(12) # 3D C-order i = nditer(a.reshape(2, 3, 2), ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) # 3D Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F'), ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11]) # 3D reversed C-order i = nditer(a.reshape(2, 3, 2)[::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5]) i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7]) i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10]) # 3D reversed Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10]) def test_iter_best_order_f_index_1d(): # The Fortran index should be correct with any reordering a = arange(4) # 1D order i = nditer(a, ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3]) # 1D reversed order i = nditer(a[::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [3, 2, 1, 0]) def test_iter_best_order_f_index_2d(): # The Fortran index should be correct with any reordering a = arange(6) # 2D C-order i = nditer(a.reshape(2, 3), ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 2, 4, 1, 3, 5]) # 2D Fortran-order i = nditer(a.reshape(2, 3).copy(order='F'), ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5]) # 2D reversed C-order i = nditer(a.reshape(2, 3)[::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 3, 5, 0, 2, 4]) i = nditer(a.reshape(2, 3)[:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 2, 0, 5, 3, 1]) i = nditer(a.reshape(2, 3)[::-1, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [5, 3, 1, 4, 2, 0]) # 2D reversed Fortran-order i = nditer(a.reshape(2, 3).copy(order='F')[::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 0, 3, 2, 5, 4]) i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 5, 2, 3, 0, 1]) i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0]) def test_iter_best_order_f_index_3d(): # The Fortran index should be correct with any reordering a = arange(12) # 3D C-order i = nditer(a.reshape(2, 3, 2), ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11]) # 3D Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F'), ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) # 3D reversed C-order i = nditer(a.reshape(2, 3, 2)[::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10]) i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7]) i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5]) # 3D reversed Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5]) def test_iter_no_inner_full_coalesce(): # Check no_inner iterators which coalesce into a single inner loop for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: size = np.prod(shape) a = arange(size) # Test each combination of forward and backwards indexing for dirs in range(2**len(shape)): dirs_index = [slice(None)]*len(shape) for bit in range(len(shape)): if ((2**bit) & dirs): dirs_index[bit] = slice(None, None, -1) dirs_index = tuple(dirs_index) aview = a.reshape(shape)[dirs_index] # C-order i = nditer(aview, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 1) assert_equal(i[0].shape, (size,)) # Fortran-order i = nditer(aview.T, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 1) assert_equal(i[0].shape, (size,)) # Other order if len(shape) > 2: i = nditer(aview.swapaxes(0, 1), ['external_loop'], [['readonly']]) assert_equal(i.ndim, 1) assert_equal(i[0].shape, (size,)) def test_iter_no_inner_dim_coalescing(): # Check no_inner iterators whose dimensions may not coalesce completely # Skipping the last element in a dimension prevents coalescing # with the next-bigger dimension a = arange(24).reshape(2, 3, 4)[:,:, :-1] i = nditer(a, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 2) assert_equal(i[0].shape, (3,)) a = arange(24).reshape(2, 3, 4)[:, :-1,:] i = nditer(a, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 2) assert_equal(i[0].shape, (8,)) a = arange(24).reshape(2, 3, 4)[:-1,:,:] i = nditer(a, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 1) assert_equal(i[0].shape, (12,)) # Even with lots of 1-sized dimensions, should still coalesce a = arange(24).reshape(1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1) i = nditer(a, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 1) assert_equal(i[0].shape, (24,)) def test_iter_dim_coalescing(): # Check that the correct number of dimensions are coalesced # Tracking a multi-index disables coalescing a = arange(24).reshape(2, 3, 4) i = nditer(a, ['multi_index'], [['readonly']]) assert_equal(i.ndim, 3) # A tracked index can allow coalescing if it's compatible with the array a3d = arange(24).reshape(2, 3, 4) i = nditer(a3d, ['c_index'], [['readonly']]) assert_equal(i.ndim, 1) i = nditer(a3d.swapaxes(0, 1), ['c_index'], [['readonly']]) assert_equal(i.ndim, 3) i = nditer(a3d.T, ['c_index'], [['readonly']]) assert_equal(i.ndim, 3) i = nditer(a3d.T, ['f_index'], [['readonly']]) assert_equal(i.ndim, 1) i = nditer(a3d.T.swapaxes(0, 1), ['f_index'], [['readonly']]) assert_equal(i.ndim, 3) # When C or F order is forced, coalescing may still occur a3d = arange(24).reshape(2, 3, 4) i = nditer(a3d, order='C') assert_equal(i.ndim, 1) i = nditer(a3d.T, order='C') assert_equal(i.ndim, 3) i = nditer(a3d, order='F') assert_equal(i.ndim, 3) i = nditer(a3d.T, order='F') assert_equal(i.ndim, 1) i = nditer(a3d, order='A') assert_equal(i.ndim, 1) i = nditer(a3d.T, order='A') assert_equal(i.ndim, 1) def test_iter_broadcasting(): # Standard NumPy broadcasting rules # 1D with scalar i = nditer([arange(6), np.int32(2)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 6) assert_equal(i.shape, (6,)) # 2D with scalar i = nditer([arange(6).reshape(2, 3), np.int32(2)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 6) assert_equal(i.shape, (2, 3)) # 2D with 1D i = nditer([arange(6).reshape(2, 3), arange(3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 6) assert_equal(i.shape, (2, 3)) i = nditer([arange(2).reshape(2, 1), arange(3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 6) assert_equal(i.shape, (2, 3)) # 2D with 2D i = nditer([arange(2).reshape(2, 1), arange(3).reshape(1, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 6) assert_equal(i.shape, (2, 3)) # 3D with scalar i = nditer([np.int32(2), arange(24).reshape(4, 2, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) # 3D with 1D i = nditer([arange(3), arange(24).reshape(4, 2, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) i = nditer([arange(3), arange(8).reshape(4, 2, 1)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) # 3D with 2D i = nditer([arange(6).reshape(2, 3), arange(24).reshape(4, 2, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) i = nditer([arange(2).reshape(2, 1), arange(24).reshape(4, 2, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) i = nditer([arange(3).reshape(1, 3), arange(8).reshape(4, 2, 1)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) # 3D with 3D i = nditer([arange(2).reshape(1, 2, 1), arange(3).reshape(1, 1, 3), arange(4).reshape(4, 1, 1)], ['multi_index'], [['readonly']]*3) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) i = nditer([arange(6).reshape(1, 2, 3), arange(4).reshape(4, 1, 1)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) i = nditer([arange(24).reshape(4, 2, 3), arange(12).reshape(4, 1, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) def test_iter_itershape(): # Check that allocated outputs work with a specified shape a = np.arange(6, dtype='i2').reshape(2, 3) i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], op_axes=[[0, 1, None], None], itershape=(-1, -1, 4)) assert_equal(i.operands[1].shape, (2, 3, 4)) assert_equal(i.operands[1].strides, (24, 8, 2)) i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']], op_axes=[[0, 1, None], None], itershape=(-1, -1, 4)) assert_equal(i.operands[1].shape, (3, 2, 4)) assert_equal(i.operands[1].strides, (8, 24, 2)) i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']], order='F', op_axes=[[0, 1, None], None], itershape=(-1, -1, 4)) assert_equal(i.operands[1].shape, (3, 2, 4)) assert_equal(i.operands[1].strides, (2, 6, 12)) # If we specify 1 in the itershape, it shouldn't allow broadcasting # of that dimension to a bigger value assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['writeonly', 'allocate']], op_axes=[[0, 1, None], None], itershape=(-1, 1, 4)) # Test bug that for no op_axes but itershape, they are NULLed correctly i = np.nditer([np.ones(2), None, None], itershape=(2,)) def test_iter_broadcasting_errors(): # Check that errors are thrown for bad broadcasting shapes # 1D with 1D assert_raises(ValueError, nditer, [arange(2), arange(3)], [], [['readonly']]*2) # 2D with 1D assert_raises(ValueError, nditer, [arange(6).reshape(2, 3), arange(2)], [], [['readonly']]*2) # 2D with 2D assert_raises(ValueError, nditer, [arange(6).reshape(2, 3), arange(9).reshape(3, 3)], [], [['readonly']]*2) assert_raises(ValueError, nditer, [arange(6).reshape(2, 3), arange(4).reshape(2, 2)], [], [['readonly']]*2) # 3D with 3D assert_raises(ValueError, nditer, [arange(36).reshape(3, 3, 4), arange(24).reshape(2, 3, 4)], [], [['readonly']]*2) assert_raises(ValueError, nditer, [arange(8).reshape(2, 4, 1), arange(24).reshape(2, 3, 4)], [], [['readonly']]*2) # Verify that the error message mentions the right shapes try: nditer([arange(2).reshape(1, 2, 1), arange(3).reshape(1, 3), arange(6).reshape(2, 3)], [], [['readonly'], ['readonly'], ['writeonly', 'no_broadcast']]) raise AssertionError('Should have raised a broadcast error') except ValueError as e: msg = str(e) # The message should contain the shape of the 3rd operand assert_(msg.find('(2,3)') >= 0, 'Message "%s" doesn\'t contain operand shape (2,3)' % msg) # The message should contain the broadcast shape assert_(msg.find('(1,2,3)') >= 0, 'Message "%s" doesn\'t contain broadcast shape (1,2,3)' % msg) try: nditer([arange(6).reshape(2, 3), arange(2)], [], [['readonly'], ['readonly']], op_axes=[[0, 1], [0, np.newaxis]], itershape=(4, 3)) raise AssertionError('Should have raised a broadcast error') except ValueError as e: msg = str(e) # The message should contain "shape->remappedshape" for each operand assert_(msg.find('(2,3)->(2,3)') >= 0, 'Message "%s" doesn\'t contain operand shape (2,3)->(2,3)' % msg) assert_(msg.find('(2,)->(2,newaxis)') >= 0, ('Message "%s" doesn\'t contain remapped operand shape' + '(2,)->(2,newaxis)') % msg) # The message should contain the itershape parameter assert_(msg.find('(4,3)') >= 0, 'Message "%s" doesn\'t contain itershape parameter (4,3)' % msg) try: nditer([np.zeros((2, 1, 1)), np.zeros((2,))], [], [['writeonly', 'no_broadcast'], ['readonly']]) raise AssertionError('Should have raised a broadcast error') except ValueError as e: msg = str(e) # The message should contain the shape of the bad operand assert_(msg.find('(2,1,1)') >= 0, 'Message "%s" doesn\'t contain operand shape (2,1,1)' % msg) # The message should contain the broadcast shape assert_(msg.find('(2,1,2)') >= 0, 'Message "%s" doesn\'t contain the broadcast shape (2,1,2)' % msg) def test_iter_flags_errors(): # Check that bad combinations of flags produce errors a = arange(6) # Not enough operands assert_raises(ValueError, nditer, [], [], []) # Too many operands assert_raises(ValueError, nditer, [a]*100, [], [['readonly']]*100) # Bad global flag assert_raises(ValueError, nditer, [a], ['bad flag'], [['readonly']]) # Bad op flag assert_raises(ValueError, nditer, [a], [], [['readonly', 'bad flag']]) # Bad order parameter assert_raises(ValueError, nditer, [a], [], [['readonly']], order='G') # Bad casting parameter assert_raises(ValueError, nditer, [a], [], [['readonly']], casting='noon') # op_flags must match ops assert_raises(ValueError, nditer, [a]*3, [], [['readonly']]*2) # Cannot track both a C and an F index assert_raises(ValueError, nditer, a, ['c_index', 'f_index'], [['readonly']]) # Inner iteration and multi-indices/indices are incompatible assert_raises(ValueError, nditer, a, ['external_loop', 'multi_index'], [['readonly']]) assert_raises(ValueError, nditer, a, ['external_loop', 'c_index'], [['readonly']]) assert_raises(ValueError, nditer, a, ['external_loop', 'f_index'], [['readonly']]) # Must specify exactly one of readwrite/readonly/writeonly per operand assert_raises(ValueError, nditer, a, [], [[]]) assert_raises(ValueError, nditer, a, [], [['readonly', 'writeonly']]) assert_raises(ValueError, nditer, a, [], [['readonly', 'readwrite']]) assert_raises(ValueError, nditer, a, [], [['writeonly', 'readwrite']]) assert_raises(ValueError, nditer, a, [], [['readonly', 'writeonly', 'readwrite']]) # Python scalars are always readonly assert_raises(TypeError, nditer, 1.5, [], [['writeonly']]) assert_raises(TypeError, nditer, 1.5, [], [['readwrite']]) # Array scalars are always readonly assert_raises(TypeError, nditer, np.int32(1), [], [['writeonly']]) assert_raises(TypeError, nditer, np.int32(1), [], [['readwrite']]) # Check readonly array a.flags.writeable = False assert_raises(ValueError, nditer, a, [], [['writeonly']]) assert_raises(ValueError, nditer, a, [], [['readwrite']]) a.flags.writeable = True # Multi-indices available only with the multi_index flag i = nditer(arange(6), [], [['readonly']]) assert_raises(ValueError, lambda i:i.multi_index, i) # Index available only with an index flag assert_raises(ValueError, lambda i:i.index, i) # GotoCoords and GotoIndex incompatible with buffering or no_inner def assign_multi_index(i): i.multi_index = (0,) def assign_index(i): i.index = 0 def assign_iterindex(i): i.iterindex = 0 def assign_iterrange(i): i.iterrange = (0, 1) i = nditer(arange(6), ['external_loop']) assert_raises(ValueError, assign_multi_index, i) assert_raises(ValueError, assign_index, i) assert_raises(ValueError, assign_iterindex, i) assert_raises(ValueError, assign_iterrange, i) i = nditer(arange(6), ['buffered']) assert_raises(ValueError, assign_multi_index, i) assert_raises(ValueError, assign_index, i) assert_raises(ValueError, assign_iterrange, i) # Can't iterate if size is zero assert_raises(ValueError, nditer, np.array([])) def test_iter_slice(): a, b, c = np.arange(3), np.arange(3), np.arange(3.) i = nditer([a, b, c], [], ['readwrite']) i[0:2] = (3, 3) assert_equal(a, [3, 1, 2]) assert_equal(b, [3, 1, 2]) assert_equal(c, [0, 1, 2]) i[1] = 12 assert_equal(i[0:2], [3, 12]) def test_iter_nbo_align_contig(): # Check that byte order, alignment, and contig changes work # Byte order change by requesting a specific dtype a = np.arange(6, dtype='f4') au = a.byteswap().newbyteorder() assert_(a.dtype.byteorder != au.dtype.byteorder) i = nditer(au, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder) assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder) assert_equal(i.operands[0], a) i.operands[0][:] = 2 i = None assert_equal(au, [2]*6) # Byte order change by requesting NBO a = np.arange(6, dtype='f4') au = a.byteswap().newbyteorder() assert_(a.dtype.byteorder != au.dtype.byteorder) i = nditer(au, [], [['readwrite', 'updateifcopy', 'nbo']], casting='equiv') assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder) assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder) assert_equal(i.operands[0], a) i.operands[0][:] = 2 i = None assert_equal(au, [2]*6) # Unaligned input a = np.zeros((6*4+1,), dtype='i1')[1:] a.dtype = 'f4' a[:] = np.arange(6, dtype='f4') assert_(not a.flags.aligned) # Without 'aligned', shouldn't copy i = nditer(a, [], [['readonly']]) assert_(not i.operands[0].flags.aligned) assert_equal(i.operands[0], a) # With 'aligned', should make a copy i = nditer(a, [], [['readwrite', 'updateifcopy', 'aligned']]) assert_(i.operands[0].flags.aligned) assert_equal(i.operands[0], a) i.operands[0][:] = 3 i = None assert_equal(a, [3]*6) # Discontiguous input a = arange(12) # If it is contiguous, shouldn't copy i = nditer(a[:6], [], [['readonly']]) assert_(i.operands[0].flags.contiguous) assert_equal(i.operands[0], a[:6]) # If it isn't contiguous, should buffer i = nditer(a[::2], ['buffered', 'external_loop'], [['readonly', 'contig']], buffersize=10) assert_(i[0].flags.contiguous) assert_equal(i[0], a[::2]) def test_iter_array_cast(): # Check that arrays are cast as requested # No cast 'f4' -> 'f4' a = np.arange(6, dtype='f4').reshape(2, 3) i = nditer(a, [], [['readwrite']], op_dtypes=[np.dtype('f4')]) assert_equal(i.operands[0], a) assert_equal(i.operands[0].dtype, np.dtype('f4')) # Byte-order cast '<f4' -> '>f4' a = np.arange(6, dtype='<f4').reshape(2, 3) i = nditer(a, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('>f4')]) assert_equal(i.operands[0], a) assert_equal(i.operands[0].dtype, np.dtype('>f4')) # Safe case 'f4' -> 'f8' a = np.arange(24, dtype='f4').reshape(2, 3, 4).swapaxes(1, 2) i = nditer(a, [], [['readonly', 'copy']], casting='safe', op_dtypes=[np.dtype('f8')]) assert_equal(i.operands[0], a) assert_equal(i.operands[0].dtype, np.dtype('f8')) # The memory layout of the temporary should match a (a is (48,4,16)) # except negative strides get flipped to positive strides. assert_equal(i.operands[0].strides, (96, 8, 32)) a = a[::-1,:, ::-1] i = nditer(a, [], [['readonly', 'copy']], casting='safe', op_dtypes=[np.dtype('f8')]) assert_equal(i.operands[0], a) assert_equal(i.operands[0].dtype, np.dtype('f8')) assert_equal(i.operands[0].strides, (96, 8, 32)) # Same-kind cast 'f8' -> 'f4' -> 'f8' a = np.arange(24, dtype='f8').reshape(2, 3, 4).T i = nditer(a, [], [['readwrite', 'updateifcopy']], casting='same_kind', op_dtypes=[np.dtype('f4')]) assert_equal(i.operands[0], a) assert_equal(i.operands[0].dtype, np.dtype('f4')) assert_equal(i.operands[0].strides, (4, 16, 48)) # Check that UPDATEIFCOPY is activated i.operands[0][2, 1, 1] = -12.5 assert_(a[2, 1, 1] != -12.5) i = None assert_equal(a[2, 1, 1], -12.5) a = np.arange(6, dtype='i4')[::-2] i = nditer(a, [], [['writeonly', 'updateifcopy']], casting='unsafe', op_dtypes=[np.dtype('f4')]) assert_equal(i.operands[0].dtype, np.dtype('f4')) # Even though the stride was negative in 'a', it # becomes positive in the temporary assert_equal(i.operands[0].strides, (4,)) i.operands[0][:] = [1, 2, 3] i = None assert_equal(a, [1, 2, 3]) def test_iter_array_cast_errors(): # Check that invalid casts are caught # Need to enable copying for casts to occur assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], [['readonly']], op_dtypes=[np.dtype('f8')]) # Also need to allow casting for casts to occur assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], [['readonly', 'copy']], casting='no', op_dtypes=[np.dtype('f8')]) assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], [['readonly', 'copy']], casting='equiv', op_dtypes=[np.dtype('f8')]) assert_raises(TypeError, nditer, arange(2, dtype='f8'), [], [['writeonly', 'updateifcopy']], casting='no', op_dtypes=[np.dtype('f4')]) assert_raises(TypeError, nditer, arange(2, dtype='f8'), [], [['writeonly', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) # '<f4' -> '>f4' should not work with casting='no' assert_raises(TypeError, nditer, arange(2, dtype='<f4'), [], [['readonly', 'copy']], casting='no', op_dtypes=[np.dtype('>f4')]) # 'f4' -> 'f8' is a safe cast, but 'f8' -> 'f4' isn't assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], [['readwrite', 'updateifcopy']], casting='safe', op_dtypes=[np.dtype('f8')]) assert_raises(TypeError, nditer, arange(2, dtype='f8'), [], [['readwrite', 'updateifcopy']], casting='safe', op_dtypes=[np.dtype('f4')]) # 'f4' -> 'i4' is neither a safe nor a same-kind cast assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], [['readonly', 'copy']], casting='same_kind', op_dtypes=[np.dtype('i4')]) assert_raises(TypeError, nditer, arange(2, dtype='i4'), [], [['writeonly', 'updateifcopy']], casting='same_kind', op_dtypes=[np.dtype('f4')]) def test_iter_scalar_cast(): # Check that scalars are cast as requested # No cast 'f4' -> 'f4' i = nditer(np.float32(2.5), [], [['readonly']], op_dtypes=[np.dtype('f4')]) assert_equal(i.dtypes[0], np.dtype('f4')) assert_equal(i.value.dtype, np.dtype('f4')) assert_equal(i.value, 2.5) # Safe cast 'f4' -> 'f8' i = nditer(np.float32(2.5), [], [['readonly', 'copy']], casting='safe', op_dtypes=[np.dtype('f8')]) assert_equal(i.dtypes[0], np.dtype('f8')) assert_equal(i.value.dtype, np.dtype('f8')) assert_equal(i.value, 2.5) # Same-kind cast 'f8' -> 'f4' i = nditer(np.float64(2.5), [], [['readonly', 'copy']], casting='same_kind', op_dtypes=[np.dtype('f4')]) assert_equal(i.dtypes[0], np.dtype('f4')) assert_equal(i.value.dtype, np.dtype('f4')) assert_equal(i.value, 2.5) # Unsafe cast 'f8' -> 'i4' i = nditer(np.float64(3.0), [], [['readonly', 'copy']], casting='unsafe', op_dtypes=[np.dtype('i4')]) assert_equal(i.dtypes[0], np.dtype('i4')) assert_equal(i.value.dtype, np.dtype('i4')) assert_equal(i.value, 3) # Readonly scalars may be cast even without setting COPY or BUFFERED i = nditer(3, [], [['readonly']], op_dtypes=[np.dtype('f8')]) assert_equal(i[0].dtype, np.dtype('f8')) assert_equal(i[0], 3.) def test_iter_scalar_cast_errors(): # Check that invalid casts are caught # Need to allow copying/buffering for write casts of scalars to occur assert_raises(TypeError, nditer, np.float32(2), [], [['readwrite']], op_dtypes=[np.dtype('f8')]) assert_raises(TypeError, nditer, 2.5, [], [['readwrite']], op_dtypes=[np.dtype('f4')]) # 'f8' -> 'f4' isn't a safe cast if the value would overflow assert_raises(TypeError, nditer, np.float64(1e60), [], [['readonly']], casting='safe', op_dtypes=[np.dtype('f4')]) # 'f4' -> 'i4' is neither a safe nor a same-kind cast assert_raises(TypeError, nditer, np.float32(2), [], [['readonly']], casting='same_kind', op_dtypes=[np.dtype('i4')]) def test_iter_object_arrays_basic(): # Check that object arrays work obj = {'a':3,'b':'d'} a = np.array([[1, 2, 3], None, obj, None], dtype='O') if HAS_REFCOUNT: rc = sys.getrefcount(obj) # Need to allow references for object arrays assert_raises(TypeError, nditer, a) if HAS_REFCOUNT: assert_equal(sys.getrefcount(obj), rc) i = nditer(a, ['refs_ok'], ['readonly']) vals = [x_[()] for x_ in i] assert_equal(np.array(vals, dtype='O'), a) vals, i, x = [None]*3 if HAS_REFCOUNT: assert_equal(sys.getrefcount(obj), rc) i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'], ['readonly'], order='C') assert_(i.iterationneedsapi) vals = [x_[()] for x_ in i] assert_equal(np.array(vals, dtype='O'), a.reshape(2, 2).ravel(order='F')) vals, i, x = [None]*3 if HAS_REFCOUNT: assert_equal(sys.getrefcount(obj), rc) i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'], ['readwrite'], order='C') for x in i: x[...] = None vals, i, x = [None]*3 if HAS_REFCOUNT: assert_(sys.getrefcount(obj) == rc-1) assert_equal(a, np.array([None]*4, dtype='O')) def test_iter_object_arrays_conversions(): # Conversions to/from objects a = np.arange(6, dtype='O') i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], casting='unsafe', op_dtypes='i4') for x in i: x[...] += 1 assert_equal(a, np.arange(6)+1) a = np.arange(6, dtype='i4') i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], casting='unsafe', op_dtypes='O') for x in i: x[...] += 1 assert_equal(a, np.arange(6)+1) # Non-contiguous object array a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'O')]) a = a['a'] a[:] = np.arange(6) i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], casting='unsafe', op_dtypes='i4') for x in i: x[...] += 1 assert_equal(a, np.arange(6)+1) #Non-contiguous value array a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'i4')]) a = a['a'] a[:] = np.arange(6) + 98172488 i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], casting='unsafe', op_dtypes='O') ob = i[0][()] if HAS_REFCOUNT: rc = sys.getrefcount(ob) for x in i: x[...] += 1 if HAS_REFCOUNT: assert_(sys.getrefcount(ob) == rc-1) assert_equal(a, np.arange(6)+98172489) def test_iter_common_dtype(): # Check that the iterator finds a common data type correctly i = nditer([array([3], dtype='f4'), array([0], dtype='f8')], ['common_dtype'], [['readonly', 'copy']]*2, casting='safe') assert_equal(i.dtypes[0], np.dtype('f8')) assert_equal(i.dtypes[1], np.dtype('f8')) i = nditer([array([3], dtype='i4'), array([0], dtype='f4')], ['common_dtype'], [['readonly', 'copy']]*2, casting='safe') assert_equal(i.dtypes[0], np.dtype('f8')) assert_equal(i.dtypes[1], np.dtype('f8')) i = nditer([array([3], dtype='f4'), array(0, dtype='f8')], ['common_dtype'], [['readonly', 'copy']]*2, casting='same_kind') assert_equal(i.dtypes[0], np.dtype('f4')) assert_equal(i.dtypes[1], np.dtype('f4')) i = nditer([array([3], dtype='u4'), array(0, dtype='i4')], ['common_dtype'], [['readonly', 'copy']]*2, casting='safe') assert_equal(i.dtypes[0], np.dtype('u4')) assert_equal(i.dtypes[1], np.dtype('u4')) i = nditer([array([3], dtype='u4'), array(-12, dtype='i4')], ['common_dtype'], [['readonly', 'copy']]*2, casting='safe') assert_equal(i.dtypes[0], np.dtype('i8')) assert_equal(i.dtypes[1], np.dtype('i8')) i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'), array([2j], dtype='c8'), array([9], dtype='f8')], ['common_dtype'], [['readonly', 'copy']]*4, casting='safe') assert_equal(i.dtypes[0], np.dtype('c16')) assert_equal(i.dtypes[1], np.dtype('c16')) assert_equal(i.dtypes[2], np.dtype('c16')) assert_equal(i.dtypes[3], np.dtype('c16')) assert_equal(i.value, (3, -12, 2j, 9)) # When allocating outputs, other outputs aren't factored in i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')], [], [['readonly', 'copy'], ['writeonly', 'allocate'], ['writeonly']], casting='safe') assert_equal(i.dtypes[0], np.dtype('i4')) assert_equal(i.dtypes[1], np.dtype('i4')) assert_equal(i.dtypes[2], np.dtype('c16')) # But, if common data types are requested, they are i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')], ['common_dtype'], [['readonly', 'copy'], ['writeonly', 'allocate'], ['writeonly']], casting='safe') assert_equal(i.dtypes[0], np.dtype('c16')) assert_equal(i.dtypes[1], np.dtype('c16')) assert_equal(i.dtypes[2], np.dtype('c16')) def test_iter_copy_if_overlap(): # Ensure the iterator makes copies on read/write overlap, if requested # Copy not needed, 1 op for flag in ['readonly', 'writeonly', 'readwrite']: a = arange(10) i = nditer([a], ['copy_if_overlap'], [[flag]]) assert_(i.operands[0] is a) # Copy needed, 2 ops, read-write overlap x = arange(10) a = x[1:] b = x[:-1] i = nditer([a, b], ['copy_if_overlap'], [['readonly'], ['readwrite']]) assert_(not np.shares_memory(*i.operands)) # Copy not needed with elementwise, 2 ops, exactly same arrays x = arange(10) a = x b = x i = nditer([a, b], ['copy_if_overlap'], [['readonly', 'overlap_assume_elementwise'], ['readwrite', 'overlap_assume_elementwise']]) assert_(i.operands[0] is a and i.operands[1] is b) i = nditer([a, b], ['copy_if_overlap'], [['readonly'], ['readwrite']]) assert_(i.operands[0] is a and not np.shares_memory(i.operands[1], b)) # Copy not needed, 2 ops, no overlap x = arange(10) a = x[::2] b = x[1::2] i = nditer([a, b], ['copy_if_overlap'], [['readonly'], ['writeonly']]) assert_(i.operands[0] is a and i.operands[1] is b) # Copy needed, 2 ops, read-write overlap x = arange(4, dtype=np.int8) a = x[3:] b = x.view(np.int32)[:1] i = nditer([a, b], ['copy_if_overlap'], [['readonly'], ['writeonly']]) assert_(not np.shares_memory(*i.operands)) # Copy needed, 3 ops, read-write overlap for flag in ['writeonly', 'readwrite']: x = np.ones([10, 10]) a = x b = x.T c = x i = nditer([a, b, c], ['copy_if_overlap'], [['readonly'], ['readonly'], [flag]]) a2, b2, c2 = i.operands assert_(not np.shares_memory(a2, c2)) assert_(not np.shares_memory(b2, c2)) # Copy not needed, 3 ops, read-only overlap x = np.ones([10, 10]) a = x b = x.T c = x i = nditer([a, b, c], ['copy_if_overlap'], [['readonly'], ['readonly'], ['readonly']]) a2, b2, c2 = i.operands assert_(a is a2) assert_(b is b2) assert_(c is c2) # Copy not needed, 3 ops, read-only overlap x = np.ones([10, 10]) a = x b = np.ones([10, 10]) c = x.T i = nditer([a, b, c], ['copy_if_overlap'], [['readonly'], ['writeonly'], ['readonly']]) a2, b2, c2 = i.operands assert_(a is a2) assert_(b is b2) assert_(c is c2) # Copy not needed, 3 ops, write-only overlap x = np.arange(7) a = x[:3] b = x[3:6] c = x[4:7] i = nditer([a, b, c], ['copy_if_overlap'], [['readonly'], ['writeonly'], ['writeonly']]) a2, b2, c2 = i.operands assert_(a is a2) assert_(b is b2) assert_(c is c2) def test_iter_op_axes(): # Check that custom axes work # Reverse the axes a = arange(6).reshape(2, 3) i = nditer([a, a.T], [], [['readonly']]*2, op_axes=[[0, 1], [1, 0]]) assert_(all([x == y for (x, y) in i])) a = arange(24).reshape(2, 3, 4) i = nditer([a.T, a], [], [['readonly']]*2, op_axes=[[2, 1, 0], None]) assert_(all([x == y for (x, y) in i])) # Broadcast 1D to any dimension a = arange(1, 31).reshape(2, 3, 5) b = arange(1, 3) i = nditer([a, b], [], [['readonly']]*2, op_axes=[None, [0, -1, -1]]) assert_equal([x*y for (x, y) in i], (a*b.reshape(2, 1, 1)).ravel()) b = arange(1, 4) i = nditer([a, b], [], [['readonly']]*2, op_axes=[None, [-1, 0, -1]]) assert_equal([x*y for (x, y) in i], (a*b.reshape(1, 3, 1)).ravel()) b = arange(1, 6) i = nditer([a, b], [], [['readonly']]*2, op_axes=[None, [np.newaxis, np.newaxis, 0]]) assert_equal([x*y for (x, y) in i], (a*b.reshape(1, 1, 5)).ravel()) # Inner product-style broadcasting a = arange(24).reshape(2, 3, 4) b = arange(40).reshape(5, 2, 4) i = nditer([a, b], ['multi_index'], [['readonly']]*2, op_axes=[[0, 1, -1, -1], [-1, -1, 0, 1]]) assert_equal(i.shape, (2, 3, 5, 2)) # Matrix product-style broadcasting a = arange(12).reshape(3, 4) b = arange(20).reshape(4, 5) i = nditer([a, b], ['multi_index'], [['readonly']]*2, op_axes=[[0, -1], [-1, 1]]) assert_equal(i.shape, (3, 5)) def test_iter_op_axes_errors(): # Check that custom axes throws errors for bad inputs # Wrong number of items in op_axes a = arange(6).reshape(2, 3) assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0], [1], [0]]) # Out of bounds items in op_axes assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[2, 1], [0, 1]]) assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0, 1], [2, -1]]) # Duplicate items in op_axes assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0, 0], [0, 1]]) assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0, 1], [1, 1]]) # Different sized arrays in op_axes assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0, 1], [0, 1, 0]]) # Non-broadcastable dimensions in the result assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0, 1], [1, 0]]) def test_iter_copy(): # Check that copying the iterator works correctly a = arange(24).reshape(2, 3, 4) # Simple iterator i = nditer(a) j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) i.iterindex = 3 j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) # Buffered iterator i = nditer(a, ['buffered', 'ranged'], order='F', buffersize=3) j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) i.iterindex = 3 j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) i.iterrange = (3, 9) j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) i.iterrange = (2, 18) next(i) next(i) j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) # Casting iterator i = nditer(a, ['buffered'], order='F', casting='unsafe', op_dtypes='f8', buffersize=5) j = i.copy() i = None assert_equal([x[()] for x in j], a.ravel(order='F')) a = arange(24, dtype='<i4').reshape(2, 3, 4) i = nditer(a, ['buffered'], order='F', casting='unsafe', op_dtypes='>f8', buffersize=5) j = i.copy() i = None assert_equal([x[()] for x in j], a.ravel(order='F')) def test_iter_allocate_output_simple(): # Check that the iterator will properly allocate outputs # Simple case a = arange(6) i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')]) assert_equal(i.operands[1].shape, a.shape) assert_equal(i.operands[1].dtype, np.dtype('f4')) def test_iter_allocate_output_buffered_readwrite(): # Allocated output with buffering + delay_bufalloc a = arange(6) i = nditer([a, None], ['buffered', 'delay_bufalloc'], [['readonly'], ['allocate', 'readwrite']]) i.operands[1][:] = 1 i.reset() for x in i: x[1][...] += x[0][...] assert_equal(i.operands[1], a+1) def test_iter_allocate_output_itorder(): # The allocated output should match the iteration order # C-order input, best iteration order a = arange(6, dtype='i4').reshape(2, 3) i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')]) assert_equal(i.operands[1].shape, a.shape) assert_equal(i.operands[1].strides, a.strides) assert_equal(i.operands[1].dtype, np.dtype('f4')) # F-order input, best iteration order a = arange(24, dtype='i4').reshape(2, 3, 4).T i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')]) assert_equal(i.operands[1].shape, a.shape) assert_equal(i.operands[1].strides, a.strides) assert_equal(i.operands[1].dtype, np.dtype('f4')) # Non-contiguous input, C iteration order a = arange(24, dtype='i4').reshape(2, 3, 4).swapaxes(0, 1) i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], order='C', op_dtypes=[None, np.dtype('f4')]) assert_equal(i.operands[1].shape, a.shape) assert_equal(i.operands[1].strides, (32, 16, 4)) assert_equal(i.operands[1].dtype, np.dtype('f4')) def test_iter_allocate_output_opaxes(): # Specifying op_axes should work a = arange(24, dtype='i4').reshape(2, 3, 4) i = nditer([None, a], [], [['writeonly', 'allocate'], ['readonly']], op_dtypes=[np.dtype('u4'), None], op_axes=[[1, 2, 0], None]) assert_equal(i.operands[0].shape, (4, 2, 3)) assert_equal(i.operands[0].strides, (4, 48, 16)) assert_equal(i.operands[0].dtype, np.dtype('u4')) def test_iter_allocate_output_types_promotion(): # Check type promotion of automatic outputs i = nditer([array([3], dtype='f4'), array([0], dtype='f8'), None], [], [['readonly']]*2+[['writeonly', 'allocate']]) assert_equal(i.dtypes[2], np.dtype('f8')) i = nditer([array([3], dtype='i4'), array([0], dtype='f4'), None], [], [['readonly']]*2+[['writeonly', 'allocate']]) assert_equal(i.dtypes[2], np.dtype('f8')) i = nditer([array([3], dtype='f4'), array(0, dtype='f8'), None], [], [['readonly']]*2+[['writeonly', 'allocate']]) assert_equal(i.dtypes[2], np.dtype('f4')) i = nditer([array([3], dtype='u4'), array(0, dtype='i4'), None], [], [['readonly']]*2+[['writeonly', 'allocate']]) assert_equal(i.dtypes[2], np.dtype('u4')) i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'), None], [], [['readonly']]*2+[['writeonly', 'allocate']]) assert_equal(i.dtypes[2], np.dtype('i8')) def test_iter_allocate_output_types_byte_order(): # Verify the rules for byte order changes # When there's just one input, the output type exactly matches a = array([3], dtype='u4').newbyteorder() i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']]) assert_equal(i.dtypes[0], i.dtypes[1]) # With two or more inputs, the output type is in native byte order i = nditer([a, a, None], [], [['readonly'], ['readonly'], ['writeonly', 'allocate']]) assert_(i.dtypes[0] != i.dtypes[2]) assert_equal(i.dtypes[0].newbyteorder('='), i.dtypes[2]) def test_iter_allocate_output_types_scalar(): # If the inputs are all scalars, the output should be a scalar i = nditer([None, 1, 2.3, np.float32(12), np.complex128(3)], [], [['writeonly', 'allocate']] + [['readonly']]*4) assert_equal(i.operands[0].dtype, np.dtype('complex128')) assert_equal(i.operands[0].ndim, 0) def test_iter_allocate_output_subtype(): # Make sure that the subtype with priority wins # matrix vs ndarray a = np.matrix([[1, 2], [3, 4]]) b = np.arange(4).reshape(2, 2).T i = nditer([a, b, None], [], [['readonly'], ['readonly'], ['writeonly', 'allocate']]) assert_equal(type(a), type(i.operands[2])) assert_(type(b) != type(i.operands[2])) assert_equal(i.operands[2].shape, (2, 2)) # matrix always wants things to be 2D b = np.arange(4).reshape(1, 2, 2) assert_raises(RuntimeError, nditer, [a, b, None], [], [['readonly'], ['readonly'], ['writeonly', 'allocate']]) # but if subtypes are disabled, the result can still work i = nditer([a, b, None], [], [['readonly'], ['readonly'], ['writeonly', 'allocate', 'no_subtype']]) assert_equal(type(b), type(i.operands[2])) assert_(type(a) != type(i.operands[2])) assert_equal(i.operands[2].shape, (1, 2, 2)) def test_iter_allocate_output_errors(): # Check that the iterator will throw errors for bad output allocations # Need an input if no output data type is specified a = arange(6) assert_raises(TypeError, nditer, [a, None], [], [['writeonly'], ['writeonly', 'allocate']]) # Allocated output should be flagged for writing assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['allocate', 'readonly']]) # Allocated output can't have buffering without delayed bufalloc assert_raises(ValueError, nditer, [a, None], ['buffered'], ['allocate', 'readwrite']) # Must specify at least one input assert_raises(ValueError, nditer, [None, None], [], [['writeonly', 'allocate'], ['writeonly', 'allocate']], op_dtypes=[np.dtype('f4'), np.dtype('f4')]) # If using op_axes, must specify all the axes a = arange(24, dtype='i4').reshape(2, 3, 4) assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')], op_axes=[None, [0, np.newaxis, 1]]) # If using op_axes, the axes must be within bounds assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')], op_axes=[None, [0, 3, 1]]) # If using op_axes, there can't be duplicates assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')], op_axes=[None, [0, 2, 1, 0]]) def test_iter_remove_axis(): a = arange(24).reshape(2, 3, 4) i = nditer(a, ['multi_index']) i.remove_axis(1) assert_equal([x for x in i], a[:, 0,:].ravel()) a = a[::-1,:,:] i = nditer(a, ['multi_index']) i.remove_axis(0) assert_equal([x for x in i], a[0,:,:].ravel()) def test_iter_remove_multi_index_inner_loop(): # Check that removing multi-index support works a = arange(24).reshape(2, 3, 4) i = nditer(a, ['multi_index']) assert_equal(i.ndim, 3) assert_equal(i.shape, (2, 3, 4)) assert_equal(i.itviews[0].shape, (2, 3, 4)) # Removing the multi-index tracking causes all dimensions to coalesce before = [x for x in i] i.remove_multi_index() after = [x for x in i] assert_equal(before, after) assert_equal(i.ndim, 1) assert_raises(ValueError, lambda i:i.shape, i) assert_equal(i.itviews[0].shape, (24,)) # Removing the inner loop means there's just one iteration i.reset() assert_equal(i.itersize, 24) assert_equal(i[0].shape, tuple()) i.enable_external_loop() assert_equal(i.itersize, 24) assert_equal(i[0].shape, (24,)) assert_equal(i.value, arange(24)) def test_iter_iterindex(): # Make sure iterindex works buffersize = 5 a = arange(24).reshape(4, 3, 2) for flags in ([], ['buffered']): i = nditer(a, flags, buffersize=buffersize) assert_equal(iter_iterindices(i), list(range(24))) i.iterindex = 2 assert_equal(iter_iterindices(i), list(range(2, 24))) i = nditer(a, flags, order='F', buffersize=buffersize) assert_equal(iter_iterindices(i), list(range(24))) i.iterindex = 5 assert_equal(iter_iterindices(i), list(range(5, 24))) i = nditer(a[::-1], flags, order='F', buffersize=buffersize) assert_equal(iter_iterindices(i), list(range(24))) i.iterindex = 9 assert_equal(iter_iterindices(i), list(range(9, 24))) i = nditer(a[::-1, ::-1], flags, order='C', buffersize=buffersize) assert_equal(iter_iterindices(i), list(range(24))) i.iterindex = 13 assert_equal(iter_iterindices(i), list(range(13, 24))) i = nditer(a[::1, ::-1], flags, buffersize=buffersize) assert_equal(iter_iterindices(i), list(range(24))) i.iterindex = 23 assert_equal(iter_iterindices(i), list(range(23, 24))) i.reset() i.iterindex = 2 assert_equal(iter_iterindices(i), list(range(2, 24))) def test_iter_iterrange(): # Make sure getting and resetting the iterrange works buffersize = 5 a = arange(24, dtype='i4').reshape(4, 3, 2) a_fort = a.ravel(order='F') i = nditer(a, ['ranged'], ['readonly'], order='F', buffersize=buffersize) assert_equal(i.iterrange, (0, 24)) assert_equal([x[()] for x in i], a_fort) for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]: i.iterrange = r assert_equal(i.iterrange, r) assert_equal([x[()] for x in i], a_fort[r[0]:r[1]]) i = nditer(a, ['ranged', 'buffered'], ['readonly'], order='F', op_dtypes='f8', buffersize=buffersize) assert_equal(i.iterrange, (0, 24)) assert_equal([x[()] for x in i], a_fort) for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]: i.iterrange = r assert_equal(i.iterrange, r) assert_equal([x[()] for x in i], a_fort[r[0]:r[1]]) def get_array(i): val = np.array([], dtype='f8') for x in i: val = np.concatenate((val, x)) return val i = nditer(a, ['ranged', 'buffered', 'external_loop'], ['readonly'], order='F', op_dtypes='f8', buffersize=buffersize) assert_equal(i.iterrange, (0, 24)) assert_equal(get_array(i), a_fort) for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]: i.iterrange = r assert_equal(i.iterrange, r) assert_equal(get_array(i), a_fort[r[0]:r[1]]) def test_iter_buffering(): # Test buffering with several buffer sizes and types arrays = [] # F-order swapped array arrays.append(np.arange(24, dtype='c16').reshape(2, 3, 4).T.newbyteorder().byteswap()) # Contiguous 1-dimensional array arrays.append(np.arange(10, dtype='f4')) # Unaligned array a = np.zeros((4*16+1,), dtype='i1')[1:] a.dtype = 'i4' a[:] = np.arange(16, dtype='i4') arrays.append(a) # 4-D F-order array arrays.append(np.arange(120, dtype='i4').reshape(5, 3, 2, 4).T) for a in arrays: for buffersize in (1, 2, 3, 5, 8, 11, 16, 1024): vals = [] i = nditer(a, ['buffered', 'external_loop'], [['readonly', 'nbo', 'aligned']], order='C', casting='equiv', buffersize=buffersize) while not i.finished: assert_(i[0].size <= buffersize) vals.append(i[0].copy()) i.iternext() assert_equal(np.concatenate(vals), a.ravel(order='C')) def test_iter_write_buffering(): # Test that buffering of writes is working # F-order swapped array a = np.arange(24).reshape(2, 3, 4).T.newbyteorder().byteswap() i = nditer(a, ['buffered'], [['readwrite', 'nbo', 'aligned']], casting='equiv', order='C', buffersize=16) x = 0 while not i.finished: i[0] = x x += 1 i.iternext() assert_equal(a.ravel(order='C'), np.arange(24)) def test_iter_buffering_delayed_alloc(): # Test that delaying buffer allocation works a = np.arange(6) b = np.arange(1, dtype='f4') i = nditer([a, b], ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok'], ['readwrite'], casting='unsafe', op_dtypes='f4') assert_(i.has_delayed_bufalloc) assert_raises(ValueError, lambda i:i.multi_index, i) assert_raises(ValueError, lambda i:i[0], i) assert_raises(ValueError, lambda i:i[0:2], i) def assign_iter(i): i[0] = 0 assert_raises(ValueError, assign_iter, i) i.reset() assert_(not i.has_delayed_bufalloc) assert_equal(i.multi_index, (0,)) assert_equal(i[0], 0) i[1] = 1 assert_equal(i[0:2], [0, 1]) assert_equal([[x[0][()], x[1][()]] for x in i], list(zip(range(6), [1]*6))) def test_iter_buffered_cast_simple(): # Test that buffering can handle a simple cast a = np.arange(10, dtype='f4') i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('f8')], buffersize=3) for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype='f4')) def test_iter_buffered_cast_byteswapped(): # Test that buffering can handle a cast which requires swap->cast->swap a = np.arange(10, dtype='f4').newbyteorder().byteswap() i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('f8').newbyteorder()], buffersize=3) for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype='f4')) with suppress_warnings() as sup: sup.filter(np.ComplexWarning) a = np.arange(10, dtype='f8').newbyteorder().byteswap() i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='unsafe', op_dtypes=[np.dtype('c8').newbyteorder()], buffersize=3) for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype='f8')) def test_iter_buffered_cast_byteswapped_complex(): # Test that buffering can handle a cast which requires swap->cast->copy a = np.arange(10, dtype='c8').newbyteorder().byteswap() a += 2j i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('c16')], buffersize=3) for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype='c8') + 4j) a = np.arange(10, dtype='c8') a += 2j i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('c16').newbyteorder()], buffersize=3) for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype='c8') + 4j) a = np.arange(10, dtype=np.clongdouble).newbyteorder().byteswap() a += 2j i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('c16')], buffersize=3) for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype=np.clongdouble) + 4j) a = np.arange(10, dtype=np.longdouble).newbyteorder().byteswap() i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('f4')], buffersize=7) for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype=np.longdouble)) def test_iter_buffered_cast_structured_type(): # Tests buffering of structured types # simple -> struct type (duplicates the value) sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')] a = np.arange(3, dtype='f4') + 0.5 i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt) vals = [np.array(x) for x in i] assert_equal(vals[0]['a'], 0.5) assert_equal(vals[0]['b'], 0) assert_equal(vals[0]['c'], [[(0.5)]*3]*2) assert_equal(vals[0]['d'], 0.5) assert_equal(vals[1]['a'], 1.5) assert_equal(vals[1]['b'], 1) assert_equal(vals[1]['c'], [[(1.5)]*3]*2) assert_equal(vals[1]['d'], 1.5) assert_equal(vals[0].dtype, np.dtype(sdt)) # object -> struct type sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')] a = np.zeros((3,), dtype='O') a[0] = (0.5, 0.5, [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], 0.5) a[1] = (1.5, 1.5, [[1.5, 1.5, 1.5], [1.5, 1.5, 1.5]], 1.5) a[2] = (2.5, 2.5, [[2.5, 2.5, 2.5], [2.5, 2.5, 2.5]], 2.5) if HAS_REFCOUNT: rc = sys.getrefcount(a[0]) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt) vals = [x.copy() for x in i] assert_equal(vals[0]['a'], 0.5) assert_equal(vals[0]['b'], 0) assert_equal(vals[0]['c'], [[(0.5)]*3]*2) assert_equal(vals[0]['d'], 0.5) assert_equal(vals[1]['a'], 1.5) assert_equal(vals[1]['b'], 1) assert_equal(vals[1]['c'], [[(1.5)]*3]*2) assert_equal(vals[1]['d'], 1.5) assert_equal(vals[0].dtype, np.dtype(sdt)) vals, i, x = [None]*3 if HAS_REFCOUNT: assert_equal(sys.getrefcount(a[0]), rc) # struct type -> simple (takes the first value) sdt = [('a', 'f4'), ('b', 'i8'), ('d', 'O')] a = np.array([(5.5, 7, 'test'), (8, 10, 11)], dtype=sdt) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes='i4') assert_equal([x_[()] for x_ in i], [5, 8]) # struct type -> struct type (field-wise copy) sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')] sdt2 = [('d', 'u2'), ('a', 'O'), ('b', 'f8')] a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1) # New in 1.12: This behavior changes in 1.13, test for dep warning with assert_warns(FutureWarning): i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) assert_equal([np.array(x_) for x_ in i], [np.array((3, 1, 2), dtype=sdt2), np.array((6, 4, 5), dtype=sdt2)]) # struct type -> struct type (field gets discarded) sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')] sdt2 = [('b', 'O'), ('a', 'f8')] a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1) # New in 1.12: This behavior changes in 1.13, test for dep warning with assert_warns(FutureWarning): i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) vals = [] for x in i: vals.append(np.array(x)) x['a'] = x['b']+3 assert_equal(vals, [np.array((2, 1), dtype=sdt2), np.array((5, 4), dtype=sdt2)]) assert_equal(a, np.array([(5, 2, None), (8, 5, None)], dtype=sdt1)) # struct type -> struct type (structured field gets discarded) sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', [('a', 'i2'), ('b', 'i4')])] sdt2 = [('b', 'O'), ('a', 'f8')] a = np.array([(1, 2, (0, 9)), (4, 5, (20, 21))], dtype=sdt1) # New in 1.12: This behavior changes in 1.13, test for dep warning with assert_warns(FutureWarning): i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) vals = [] for x in i: vals.append(np.array(x)) x['a'] = x['b']+3 assert_equal(vals, [np.array((2, 1), dtype=sdt2), np.array((5, 4), dtype=sdt2)]) assert_equal(a, np.array([(5, 2, (0, 0)), (8, 5, (0, 0))], dtype=sdt1)) # struct type -> struct type (structured field w/ ref gets discarded) sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', [('a', 'i2'), ('b', 'O')])] sdt2 = [('b', 'O'), ('a', 'f8')] a = np.array([(1, 2, (0, 9)), (4, 5, (20, 21))], dtype=sdt1) # New in 1.12: This behavior changes in 1.13, test for dep warning with assert_warns(FutureWarning): i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) vals = [] for x in i: vals.append(np.array(x)) x['a'] = x['b']+3 assert_equal(vals, [np.array((2, 1), dtype=sdt2), np.array((5, 4), dtype=sdt2)]) assert_equal(a, np.array([(5, 2, (0, None)), (8, 5, (0, None))], dtype=sdt1)) # struct type -> struct type back (structured field w/ ref gets discarded) sdt1 = [('b', 'O'), ('a', 'f8')] sdt2 = [('a', 'f4'), ('b', 'i8'), ('d', [('a', 'i2'), ('b', 'O')])] a = np.array([(1, 2), (4, 5)], dtype=sdt1) # New in 1.12: This behavior changes in 1.13, test for dep warning with assert_warns(FutureWarning): i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) vals = [] for x in i: vals.append(np.array(x)) assert_equal(x['d'], np.array((0, None), dtype=[('a', 'i2'), ('b', 'O')])) x['a'] = x['b']+3 assert_equal(vals, [np.array((2, 1, (0, None)), dtype=sdt2), np.array((5, 4, (0, None)), dtype=sdt2)]) assert_equal(a, np.array([(1, 4), (4, 7)], dtype=sdt1)) def test_iter_buffered_cast_subarray(): # Tests buffering of subarrays # one element -> many (copies it to all) sdt1 = [('a', 'f4')] sdt2 = [('a', 'f8', (3, 2, 2))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) for x, count in zip(i, list(range(6))): assert_(np.all(x['a'] == count)) # one element -> many -> back (copies it to all) sdt1 = [('a', 'O', (1, 1))] sdt2 = [('a', 'O', (3, 2, 2))] a = np.zeros((6,), dtype=sdt1) a['a'][:, 0, 0] = np.arange(6) i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_(np.all(x['a'] == count)) x['a'][0] += 2 count += 1 assert_equal(a['a'], np.arange(6).reshape(6, 1, 1)+2) # many -> one element -> back (copies just element 0) sdt1 = [('a', 'O', (3, 2, 2))] sdt2 = [('a', 'O', (1,))] a = np.zeros((6,), dtype=sdt1) a['a'][:, 0, 0, 0] = np.arange(6) i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'], count) x['a'] += 2 count += 1 assert_equal(a['a'], np.arange(6).reshape(6, 1, 1, 1)*np.ones((1, 3, 2, 2))+2) # many -> one element -> back (copies just element 0) sdt1 = [('a', 'f8', (3, 2, 2))] sdt2 = [('a', 'O', (1,))] a = np.zeros((6,), dtype=sdt1) a['a'][:, 0, 0, 0] = np.arange(6) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'], count) count += 1 # many -> one element (copies just element 0) sdt1 = [('a', 'O', (3, 2, 2))] sdt2 = [('a', 'f4', (1,))] a = np.zeros((6,), dtype=sdt1) a['a'][:, 0, 0, 0] = np.arange(6) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'], count) count += 1 # many -> matching shape (straightforward copy) sdt1 = [('a', 'O', (3, 2, 2))] sdt2 = [('a', 'f4', (3, 2, 2))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*3*2*2).reshape(6, 3, 2, 2) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'], a[count]['a']) count += 1 # vector -> smaller vector (truncates) sdt1 = [('a', 'f8', (6,))] sdt2 = [('a', 'f4', (2,))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*6).reshape(6, 6) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'], a[count]['a'][:2]) count += 1 # vector -> bigger vector (pads with zeros) sdt1 = [('a', 'f8', (2,))] sdt2 = [('a', 'f4', (6,))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*2).reshape(6, 2) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'][:2], a[count]['a']) assert_equal(x['a'][2:], [0, 0, 0, 0]) count += 1 # vector -> matrix (broadcasts) sdt1 = [('a', 'f8', (2,))] sdt2 = [('a', 'f4', (2, 2))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*2).reshape(6, 2) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'][0], a[count]['a']) assert_equal(x['a'][1], a[count]['a']) count += 1 # vector -> matrix (broadcasts and zero-pads) sdt1 = [('a', 'f8', (2, 1))] sdt2 = [('a', 'f4', (3, 2))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*2).reshape(6, 2, 1) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'][:2, 0], a[count]['a'][:, 0]) assert_equal(x['a'][:2, 1], a[count]['a'][:, 0]) assert_equal(x['a'][2,:], [0, 0]) count += 1 # matrix -> matrix (truncates and zero-pads) sdt1 = [('a', 'f8', (2, 3))] sdt2 = [('a', 'f4', (3, 2))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*2*3).reshape(6, 2, 3) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'][:2, 0], a[count]['a'][:, 0]) assert_equal(x['a'][:2, 1], a[count]['a'][:, 1]) assert_equal(x['a'][2,:], [0, 0]) count += 1 def test_iter_buffering_badwriteback(): # Writing back from a buffer cannot combine elements # a needs write buffering, but had a broadcast dimension a = np.arange(6).reshape(2, 3, 1) b = np.arange(12).reshape(2, 3, 2) assert_raises(ValueError, nditer, [a, b], ['buffered', 'external_loop'], [['readwrite'], ['writeonly']], order='C') # But if a is readonly, it's fine nditer([a, b], ['buffered', 'external_loop'], [['readonly'], ['writeonly']], order='C') # If a has just one element, it's fine too (constant 0 stride, a reduction) a = np.arange(1).reshape(1, 1, 1) nditer([a, b], ['buffered', 'external_loop', 'reduce_ok'], [['readwrite'], ['writeonly']], order='C') # check that it fails on other dimensions too a = np.arange(6).reshape(1, 3, 2) assert_raises(ValueError, nditer, [a, b], ['buffered', 'external_loop'], [['readwrite'], ['writeonly']], order='C') a = np.arange(4).reshape(2, 1, 2) assert_raises(ValueError, nditer, [a, b], ['buffered', 'external_loop'], [['readwrite'], ['writeonly']], order='C') def test_iter_buffering_string(): # Safe casting disallows shrinking strings a = np.array(['abc', 'a', 'abcd'], dtype=np.bytes_) assert_equal(a.dtype, np.dtype('S4')) assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'], op_dtypes='S2') i = nditer(a, ['buffered'], ['readonly'], op_dtypes='S6') assert_equal(i[0], b'abc') assert_equal(i[0].dtype, np.dtype('S6')) a = np.array(['abc', 'a', 'abcd'], dtype=np.unicode) assert_equal(a.dtype, np.dtype('U4')) assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'], op_dtypes='U2') i = nditer(a, ['buffered'], ['readonly'], op_dtypes='U6') assert_equal(i[0], u'abc') assert_equal(i[0].dtype, np.dtype('U6')) def test_iter_buffering_growinner(): # Test that the inner loop grows when no buffering is needed a = np.arange(30) i = nditer(a, ['buffered', 'growinner', 'external_loop'], buffersize=5) # Should end up with just one inner loop here assert_equal(i[0].size, a.size) @dec.slow def test_iter_buffered_reduce_reuse(): # large enough array for all views, including negative strides. a = np.arange(2*3**5)[3**5:3**5+1] flags = ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok', 'refs_ok'] op_flags = [('readonly',), ('readwrite', 'allocate')] op_axes_list = [[(0, 1, 2), (0, 1, -1)], [(0, 1, 2), (0, -1, -1)]] # wrong dtype to force buffering op_dtypes = [np.float, a.dtype] def get_params(): for xs in range(-3**2, 3**2 + 1): for ys in range(xs, 3**2 + 1): for op_axes in op_axes_list: # last stride is reduced and because of that not # important for this test, as it is the inner stride. strides = (xs * a.itemsize, ys * a.itemsize, a.itemsize) arr = np.lib.stride_tricks.as_strided(a, (3, 3, 3), strides) for skip in [0, 1]: yield arr, op_axes, skip for arr, op_axes, skip in get_params(): nditer2 = np.nditer([arr.copy(), None], op_axes=op_axes, flags=flags, op_flags=op_flags, op_dtypes=op_dtypes) nditer2.operands[-1][...] = 0 nditer2.reset() nditer2.iterindex = skip for (a2_in, b2_in) in nditer2: b2_in += a2_in.astype(np.int_) comp_res = nditer2.operands[-1] for bufsize in range(0, 3**3): nditer1 = np.nditer([arr, None], op_axes=op_axes, flags=flags, op_flags=op_flags, buffersize=bufsize, op_dtypes=op_dtypes) nditer1.operands[-1][...] = 0 nditer1.reset() nditer1.iterindex = skip for (a1_in, b1_in) in nditer1: b1_in += a1_in.astype(np.int_) res = nditer1.operands[-1] assert_array_equal(res, comp_res) def test_iter_no_broadcast(): # Test that the no_broadcast flag works a = np.arange(24).reshape(2, 3, 4) b = np.arange(6).reshape(2, 3, 1) c = np.arange(12).reshape(3, 4) nditer([a, b, c], [], [['readonly', 'no_broadcast'], ['readonly'], ['readonly']]) assert_raises(ValueError, nditer, [a, b, c], [], [['readonly'], ['readonly', 'no_broadcast'], ['readonly']]) assert_raises(ValueError, nditer, [a, b, c], [], [['readonly'], ['readonly'], ['readonly', 'no_broadcast']]) def test_iter_nested_iters_basic(): # Test nested iteration basic usage a = arange(12).reshape(2, 3, 2) i, j = np.nested_iters(a, [[0], [1, 2]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) i, j = np.nested_iters(a, [[0, 1], [2]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]) i, j = np.nested_iters(a, [[0, 2], [1]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) def test_iter_nested_iters_reorder(): # Test nested iteration basic usage a = arange(12).reshape(2, 3, 2) # In 'K' order (default), it gets reordered i, j = np.nested_iters(a, [[0], [2, 1]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) i, j = np.nested_iters(a, [[1, 0], [2]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]) i, j = np.nested_iters(a, [[2, 0], [1]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) # In 'C' order, it doesn't i, j = np.nested_iters(a, [[0], [2, 1]], order='C') vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 2, 4, 1, 3, 5], [6, 8, 10, 7, 9, 11]]) i, j = np.nested_iters(a, [[1, 0], [2]], order='C') vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 1], [6, 7], [2, 3], [8, 9], [4, 5], [10, 11]]) i, j = np.nested_iters(a, [[2, 0], [1]], order='C') vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 2, 4], [6, 8, 10], [1, 3, 5], [7, 9, 11]]) def test_iter_nested_iters_flip_axes(): # Test nested iteration with negative axes a = arange(12).reshape(2, 3, 2)[::-1, ::-1, ::-1] # In 'K' order (default), the axes all get flipped i, j = np.nested_iters(a, [[0], [1, 2]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) i, j = np.nested_iters(a, [[0, 1], [2]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]) i, j = np.nested_iters(a, [[0, 2], [1]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) # In 'C' order, flipping axes is disabled i, j = np.nested_iters(a, [[0], [1, 2]], order='C') vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[11, 10, 9, 8, 7, 6], [5, 4, 3, 2, 1, 0]]) i, j = np.nested_iters(a, [[0, 1], [2]], order='C') vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[11, 10], [9, 8], [7, 6], [5, 4], [3, 2], [1, 0]]) i, j = np.nested_iters(a, [[0, 2], [1]], order='C') vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[11, 9, 7], [10, 8, 6], [5, 3, 1], [4, 2, 0]]) def test_iter_nested_iters_broadcast(): # Test nested iteration with broadcasting a = arange(2).reshape(2, 1) b = arange(3).reshape(1, 3) i, j = np.nested_iters([a, b], [[0], [1]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[[0, 0], [0, 1], [0, 2]], [[1, 0], [1, 1], [1, 2]]]) i, j = np.nested_iters([a, b], [[1], [0]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[[0, 0], [1, 0]], [[0, 1], [1, 1]], [[0, 2], [1, 2]]]) def test_iter_nested_iters_dtype_copy(): # Test nested iteration with a copy to change dtype # copy a = arange(6, dtype='i4').reshape(2, 3) i, j = np.nested_iters(a, [[0], [1]], op_flags=['readonly', 'copy'], op_dtypes='f8') assert_equal(j[0].dtype, np.dtype('f8')) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 1, 2], [3, 4, 5]]) vals = None # updateifcopy a = arange(6, dtype='f4').reshape(2, 3) i, j = np.nested_iters(a, [[0], [1]], op_flags=['readwrite', 'updateifcopy'], casting='same_kind', op_dtypes='f8') assert_equal(j[0].dtype, np.dtype('f8')) for x in i: for y in j: y[...] += 1 assert_equal(a, [[0, 1, 2], [3, 4, 5]]) i, j, x, y = (None,)*4 # force the updateifcopy assert_equal(a, [[1, 2, 3], [4, 5, 6]]) def test_iter_nested_iters_dtype_buffered(): # Test nested iteration with buffering to change dtype a = arange(6, dtype='f4').reshape(2, 3) i, j = np.nested_iters(a, [[0], [1]], flags=['buffered'], op_flags=['readwrite'], casting='same_kind', op_dtypes='f8') assert_equal(j[0].dtype, np.dtype('f8')) for x in i: for y in j: y[...] += 1 assert_equal(a, [[1, 2, 3], [4, 5, 6]]) def test_iter_reduction_error(): a = np.arange(6) assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['readwrite', 'allocate']], op_axes=[[0], [-1]]) a = np.arange(6).reshape(2, 3) assert_raises(ValueError, nditer, [a, None], ['external_loop'], [['readonly'], ['readwrite', 'allocate']], op_axes=[[0, 1], [-1, -1]]) def test_iter_reduction(): # Test doing reductions with the iterator a = np.arange(6) i = nditer([a, None], ['reduce_ok'], [['readonly'], ['readwrite', 'allocate']], op_axes=[[0], [-1]]) # Need to initialize the output operand to the addition unit i.operands[1][...] = 0 # Do the reduction for x, y in i: y[...] += x # Since no axes were specified, should have allocated a scalar assert_equal(i.operands[1].ndim, 0) assert_equal(i.operands[1], np.sum(a)) a = np.arange(6).reshape(2, 3) i = nditer([a, None], ['reduce_ok', 'external_loop'], [['readonly'], ['readwrite', 'allocate']], op_axes=[[0, 1], [-1, -1]]) # Need to initialize the output operand to the addition unit i.operands[1][...] = 0 # Reduction shape/strides for the output assert_equal(i[1].shape, (6,)) assert_equal(i[1].strides, (0,)) # Do the reduction for x, y in i: # Use a for loop instead of ``y[...] += x`` # (equivalent to ``y[...] = y[...].copy() + x``), # because y has zero strides we use for the reduction for j in range(len(y)): y[j] += x[j] # Since no axes were specified, should have allocated a scalar assert_equal(i.operands[1].ndim, 0) assert_equal(i.operands[1], np.sum(a)) # This is a tricky reduction case for the buffering double loop # to handle a = np.ones((2, 3, 5)) it1 = nditer([a, None], ['reduce_ok', 'external_loop'], [['readonly'], ['readwrite', 'allocate']], op_axes=[None, [0, -1, 1]]) it2 = nditer([a, None], ['reduce_ok', 'external_loop', 'buffered', 'delay_bufalloc'], [['readonly'], ['readwrite', 'allocate']], op_axes=[None, [0, -1, 1]], buffersize=10) it1.operands[1].fill(0) it2.operands[1].fill(0) it2.reset() for x in it1: x[1][...] += x[0] for x in it2: x[1][...] += x[0] assert_equal(it1.operands[1], it2.operands[1]) assert_equal(it2.operands[1].sum(), a.size) def test_iter_buffering_reduction(): # Test doing buffered reductions with the iterator a = np.arange(6) b = np.array(0., dtype='f8').byteswap().newbyteorder() i = nditer([a, b], ['reduce_ok', 'buffered'], [['readonly'], ['readwrite', 'nbo']], op_axes=[[0], [-1]]) assert_equal(i[1].dtype, np.dtype('f8')) assert_(i[1].dtype != b.dtype) # Do the reduction for x, y in i: y[...] += x # Since no axes were specified, should have allocated a scalar assert_equal(b, np.sum(a)) a = np.arange(6).reshape(2, 3) b = np.array([0, 0], dtype='f8').byteswap().newbyteorder() i = nditer([a, b], ['reduce_ok', 'external_loop', 'buffered'], [['readonly'], ['readwrite', 'nbo']], op_axes=[[0, 1], [0, -1]]) # Reduction shape/strides for the output assert_equal(i[1].shape, (3,)) assert_equal(i[1].strides, (0,)) # Do the reduction for x, y in i: # Use a for loop instead of ``y[...] += x`` # (equivalent to ``y[...] = y[...].copy() + x``), # because y has zero strides we use for the reduction for j in range(len(y)): y[j] += x[j] assert_equal(b, np.sum(a, axis=1)) # Iterator inner double loop was wrong on this one p = np.arange(2) + 1 it = np.nditer([p, None], ['delay_bufalloc', 'reduce_ok', 'buffered', 'external_loop'], [['readonly'], ['readwrite', 'allocate']], op_axes=[[-1, 0], [-1, -1]], itershape=(2, 2)) it.operands[1].fill(0) it.reset() assert_equal(it[0], [1, 2, 1, 2]) # Iterator inner loop should take argument contiguity into account x = np.ones((7, 13, 8), np.int8)[4:6,1:11:6,1:5].transpose(1, 2, 0) x[...] = np.arange(x.size).reshape(x.shape) y_base = np.arange(4*4, dtype=np.int8).reshape(4, 4) y_base_copy = y_base.copy() y = y_base[::2,:,None] it = np.nditer([y, x], ['buffered', 'external_loop', 'reduce_ok'], [['readwrite'], ['readonly']]) for a, b in it: a.fill(2) assert_equal(y_base[1::2], y_base_copy[1::2]) assert_equal(y_base[::2], 2) def test_iter_buffering_reduction_reuse_reduce_loops(): # There was a bug triggering reuse of the reduce loop inappropriately, # which caused processing to happen in unnecessarily small chunks # and overran the buffer. a = np.zeros((2, 7)) b = np.zeros((1, 7)) it = np.nditer([a, b], flags=['reduce_ok', 'external_loop', 'buffered'], op_flags=[['readonly'], ['readwrite']], buffersize=5) bufsizes = [] for x, y in it: bufsizes.append(x.shape[0]) assert_equal(bufsizes, [5, 2, 5, 2]) assert_equal(sum(bufsizes), a.size) def test_iter_writemasked_badinput(): a = np.zeros((2, 3)) b = np.zeros((3,)) m = np.array([[True, True, False], [False, True, False]]) m2 = np.array([True, True, False]) m3 = np.array([0, 1, 1], dtype='u1') mbad1 = np.array([0, 1, 1], dtype='i1') mbad2 = np.array([0, 1, 1], dtype='f4') # Need an 'arraymask' if any operand is 'writemasked' assert_raises(ValueError, nditer, [a, m], [], [['readwrite', 'writemasked'], ['readonly']]) # A 'writemasked' operand must not be readonly assert_raises(ValueError, nditer, [a, m], [], [['readonly', 'writemasked'], ['readonly', 'arraymask']]) # 'writemasked' and 'arraymask' may not be used together assert_raises(ValueError, nditer, [a, m], [], [['readonly'], ['readwrite', 'arraymask', 'writemasked']]) # 'arraymask' may only be specified once assert_raises(ValueError, nditer, [a, m, m2], [], [['readwrite', 'writemasked'], ['readonly', 'arraymask'], ['readonly', 'arraymask']]) # An 'arraymask' with nothing 'writemasked' also doesn't make sense assert_raises(ValueError, nditer, [a, m], [], [['readwrite'], ['readonly', 'arraymask']]) # A writemasked reduction requires a similarly smaller mask assert_raises(ValueError, nditer, [a, b, m], ['reduce_ok'], [['readonly'], ['readwrite', 'writemasked'], ['readonly', 'arraymask']]) # But this should work with a smaller/equal mask to the reduction operand np.nditer([a, b, m2], ['reduce_ok'], [['readonly'], ['readwrite', 'writemasked'], ['readonly', 'arraymask']]) # The arraymask itself cannot be a reduction assert_raises(ValueError, nditer, [a, b, m2], ['reduce_ok'], [['readonly'], ['readwrite', 'writemasked'], ['readwrite', 'arraymask']]) # A uint8 mask is ok too np.nditer([a, m3], ['buffered'], [['readwrite', 'writemasked'], ['readonly', 'arraymask']], op_dtypes=['f4', None], casting='same_kind') # An int8 mask isn't ok assert_raises(TypeError, np.nditer, [a, mbad1], ['buffered'], [['readwrite', 'writemasked'], ['readonly', 'arraymask']], op_dtypes=['f4', None], casting='same_kind') # A float32 mask isn't ok assert_raises(TypeError, np.nditer, [a, mbad2], ['buffered'], [['readwrite', 'writemasked'], ['readonly', 'arraymask']], op_dtypes=['f4', None], casting='same_kind') def test_iter_writemasked(): a = np.zeros((3,), dtype='f8') msk = np.array([True, True, False]) # When buffering is unused, 'writemasked' effectively does nothing. # It's up to the user of the iterator to obey the requested semantics. it = np.nditer([a, msk], [], [['readwrite', 'writemasked'], ['readonly', 'arraymask']]) for x, m in it: x[...] = 1 # Because we violated the semantics, all the values became 1 assert_equal(a, [1, 1, 1]) # Even if buffering is enabled, we still may be accessing the array # directly. it = np.nditer([a, msk], ['buffered'], [['readwrite', 'writemasked'], ['readonly', 'arraymask']]) for x, m in it: x[...] = 2.5 # Because we violated the semantics, all the values became 2.5 assert_equal(a, [2.5, 2.5, 2.5]) # If buffering will definitely happening, for instance because of # a cast, only the items selected by the mask will be copied back from # the buffer. it = np.nditer([a, msk], ['buffered'], [['readwrite', 'writemasked'], ['readonly', 'arraymask']], op_dtypes=['i8', None], casting='unsafe') for x, m in it: x[...] = 3 # Even though we violated the semantics, only the selected values # were copied back assert_equal(a, [3, 3, 2.5]) def test_iter_non_writable_attribute_deletion(): it = np.nditer(np.ones(2)) attr = ["value", "shape", "operands", "itviews", "has_delayed_bufalloc", "iterationneedsapi", "has_multi_index", "has_index", "dtypes", "ndim", "nop", "itersize", "finished"] for s in attr: assert_raises(AttributeError, delattr, it, s) def test_iter_writable_attribute_deletion(): it = np.nditer(np.ones(2)) attr = [ "multi_index", "index", "iterrange", "iterindex"] for s in attr: assert_raises(AttributeError, delattr, it, s) def test_iter_element_deletion(): it = np.nditer(np.ones(3)) try: del it[1] del it[1:2] except TypeError: pass except: raise AssertionError def test_iter_allocated_array_dtypes(): # If the dtype of an allocated output has a shape, the shape gets # tacked onto the end of the result. it = np.nditer(([1, 3, 20], None), op_dtypes=[None, ('i4', (2,))]) for a, b in it: b[0] = a - 1 b[1] = a + 1 assert_equal(it.operands[1], [[0, 2], [2, 4], [19, 21]]) # Make sure this works for scalars too it = np.nditer((10, 2, None), op_dtypes=[None, None, ('i4', (2, 2))]) for a, b, c in it: c[0, 0] = a - b c[0, 1] = a + b c[1, 0] = a * b c[1, 1] = a / b assert_equal(it.operands[2], [[8, 12], [20, 5]]) def test_0d_iter(): # Basic test for iteration of 0-d arrays: i = nditer([2, 3], ['multi_index'], [['readonly']]*2) assert_equal(i.ndim, 0) assert_equal(next(i), (2, 3)) assert_equal(i.multi_index, ()) assert_equal(i.iterindex, 0) assert_raises(StopIteration, next, i) # test reset: i.reset() assert_equal(next(i), (2, 3)) assert_raises(StopIteration, next, i) # test forcing to 0-d i = nditer(np.arange(5), ['multi_index'], [['readonly']], op_axes=[()]) assert_equal(i.ndim, 0) assert_equal(len(i), 1) # note that itershape=(), still behaves like None due to the conversions # Test a more complex buffered casting case (same as another test above) sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')] a = np.array(0.5, dtype='f4') i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt) vals = next(i) assert_equal(vals['a'], 0.5) assert_equal(vals['b'], 0) assert_equal(vals['c'], [[(0.5)]*3]*2) assert_equal(vals['d'], 0.5) def test_0d_nested_iter(): a = np.arange(12).reshape(2, 3, 2) i, j = np.nested_iters(a, [[], [1, 0, 2]]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]) i, j = np.nested_iters(a, [[1, 0, 2], []]) vals = [] for x in i: vals.append([y for y in j]) assert_equal(vals, [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]]) i, j, k = np.nested_iters(a, [[2, 0], [], [1]]) vals = [] for x in i: for y in j: vals.append([z for z in k]) assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) def test_iter_too_large(): # The total size of the iterator must not exceed the maximum intp due # to broadcasting. Dividing by 1024 will keep it small enough to # give a legal array. size = np.iinfo(np.intp).max // 1024 arr = np.lib.stride_tricks.as_strided(np.zeros(1), (size,), (0,)) assert_raises(ValueError, nditer, (arr, arr[:, None])) # test the same for multiindex. That may get more interesting when # removing 0 dimensional axis is allowed (since an iterator can grow then) assert_raises(ValueError, nditer, (arr, arr[:, None]), flags=['multi_index']) def test_iter_too_large_with_multiindex(): # When a multi index is being tracked, the error is delayed this # checks the delayed error messages and getting below that by # removing an axis. base_size = 2**10 num = 1 while base_size**num < np.iinfo(np.intp).max: num += 1 shape_template = [1, 1] * num arrays = [] for i in range(num): shape = shape_template[:] shape[i * 2] = 2**10 arrays.append(np.empty(shape)) arrays = tuple(arrays) # arrays are now too large to be broadcast. The different modes test # different nditer functionality with or without GIL. for mode in range(6): assert_raises(ValueError, test_nditer_too_large, arrays, -1, mode) # but if we do nothing with the nditer, it can be constructed: test_nditer_too_large(arrays, -1, 7) # When an axis is removed, things should work again (half the time): for i in range(num): for mode in range(6): # an axis with size 1024 is removed: test_nditer_too_large(arrays, i*2, mode) # an axis with size 1 is removed: assert_raises(ValueError, test_nditer_too_large, arrays, i*2 + 1, mode) if __name__ == "__main__": run_module_suite()