%PDF- %PDF-
Direktori : /proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/core/tests/ |
Current File : //proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/core/tests/test_shape_base.py |
from __future__ import division, absolute_import, print_function import warnings import numpy as np from numpy.core import (array, arange, atleast_1d, atleast_2d, atleast_3d, block, vstack, hstack, newaxis, concatenate, stack) from numpy.testing import (TestCase, assert_, assert_raises, assert_array_equal, assert_equal, run_module_suite, assert_raises_regex, assert_almost_equal) from numpy.compat import long class TestAtleast1d(TestCase): def test_0D_array(self): a = array(1) b = array(2) res = [atleast_1d(a), atleast_1d(b)] desired = [array([1]), array([2])] assert_array_equal(res, desired) def test_1D_array(self): a = array([1, 2]) b = array([2, 3]) res = [atleast_1d(a), atleast_1d(b)] desired = [array([1, 2]), array([2, 3])] assert_array_equal(res, desired) def test_2D_array(self): a = array([[1, 2], [1, 2]]) b = array([[2, 3], [2, 3]]) res = [atleast_1d(a), atleast_1d(b)] desired = [a, b] assert_array_equal(res, desired) def test_3D_array(self): a = array([[1, 2], [1, 2]]) b = array([[2, 3], [2, 3]]) a = array([a, a]) b = array([b, b]) res = [atleast_1d(a), atleast_1d(b)] desired = [a, b] assert_array_equal(res, desired) def test_r1array(self): """ Test to make sure equivalent Travis O's r1array function """ assert_(atleast_1d(3).shape == (1,)) assert_(atleast_1d(3j).shape == (1,)) assert_(atleast_1d(long(3)).shape == (1,)) assert_(atleast_1d(3.0).shape == (1,)) assert_(atleast_1d([[2, 3], [4, 5]]).shape == (2, 2)) class TestAtleast2d(TestCase): def test_0D_array(self): a = array(1) b = array(2) res = [atleast_2d(a), atleast_2d(b)] desired = [array([[1]]), array([[2]])] assert_array_equal(res, desired) def test_1D_array(self): a = array([1, 2]) b = array([2, 3]) res = [atleast_2d(a), atleast_2d(b)] desired = [array([[1, 2]]), array([[2, 3]])] assert_array_equal(res, desired) def test_2D_array(self): a = array([[1, 2], [1, 2]]) b = array([[2, 3], [2, 3]]) res = [atleast_2d(a), atleast_2d(b)] desired = [a, b] assert_array_equal(res, desired) def test_3D_array(self): a = array([[1, 2], [1, 2]]) b = array([[2, 3], [2, 3]]) a = array([a, a]) b = array([b, b]) res = [atleast_2d(a), atleast_2d(b)] desired = [a, b] assert_array_equal(res, desired) def test_r2array(self): """ Test to make sure equivalent Travis O's r2array function """ assert_(atleast_2d(3).shape == (1, 1)) assert_(atleast_2d([3j, 1]).shape == (1, 2)) assert_(atleast_2d([[[3, 1], [4, 5]], [[3, 5], [1, 2]]]).shape == (2, 2, 2)) class TestAtleast3d(TestCase): def test_0D_array(self): a = array(1) b = array(2) res = [atleast_3d(a), atleast_3d(b)] desired = [array([[[1]]]), array([[[2]]])] assert_array_equal(res, desired) def test_1D_array(self): a = array([1, 2]) b = array([2, 3]) res = [atleast_3d(a), atleast_3d(b)] desired = [array([[[1], [2]]]), array([[[2], [3]]])] assert_array_equal(res, desired) def test_2D_array(self): a = array([[1, 2], [1, 2]]) b = array([[2, 3], [2, 3]]) res = [atleast_3d(a), atleast_3d(b)] desired = [a[:,:, newaxis], b[:,:, newaxis]] assert_array_equal(res, desired) def test_3D_array(self): a = array([[1, 2], [1, 2]]) b = array([[2, 3], [2, 3]]) a = array([a, a]) b = array([b, b]) res = [atleast_3d(a), atleast_3d(b)] desired = [a, b] assert_array_equal(res, desired) class TestHstack(TestCase): def test_non_iterable(self): assert_raises(TypeError, hstack, 1) def test_empty_input(self): assert_raises(ValueError, hstack, ()) def test_0D_array(self): a = array(1) b = array(2) res = hstack([a, b]) desired = array([1, 2]) assert_array_equal(res, desired) def test_1D_array(self): a = array([1]) b = array([2]) res = hstack([a, b]) desired = array([1, 2]) assert_array_equal(res, desired) def test_2D_array(self): a = array([[1], [2]]) b = array([[1], [2]]) res = hstack([a, b]) desired = array([[1, 1], [2, 2]]) assert_array_equal(res, desired) class TestVstack(TestCase): def test_non_iterable(self): assert_raises(TypeError, vstack, 1) def test_empty_input(self): assert_raises(ValueError, vstack, ()) def test_0D_array(self): a = array(1) b = array(2) res = vstack([a, b]) desired = array([[1], [2]]) assert_array_equal(res, desired) def test_1D_array(self): a = array([1]) b = array([2]) res = vstack([a, b]) desired = array([[1], [2]]) assert_array_equal(res, desired) def test_2D_array(self): a = array([[1], [2]]) b = array([[1], [2]]) res = vstack([a, b]) desired = array([[1], [2], [1], [2]]) assert_array_equal(res, desired) def test_2D_array2(self): a = array([1, 2]) b = array([1, 2]) res = vstack([a, b]) desired = array([[1, 2], [1, 2]]) assert_array_equal(res, desired) class TestConcatenate(TestCase): def test_exceptions(self): # test axis must be in bounds for ndim in [1, 2, 3]: a = np.ones((1,)*ndim) np.concatenate((a, a), axis=0) # OK assert_raises(np.AxisError, np.concatenate, (a, a), axis=ndim) assert_raises(np.AxisError, np.concatenate, (a, a), axis=-(ndim + 1)) # Scalars cannot be concatenated assert_raises(ValueError, concatenate, (0,)) assert_raises(ValueError, concatenate, (np.array(0),)) # test shapes must match except for concatenation axis a = np.ones((1, 2, 3)) b = np.ones((2, 2, 3)) axis = list(range(3)) for i in range(3): np.concatenate((a, b), axis=axis[0]) # OK assert_raises(ValueError, np.concatenate, (a, b), axis=axis[1]) assert_raises(ValueError, np.concatenate, (a, b), axis=axis[2]) a = np.rollaxis(a, -1) b = np.rollaxis(b, -1) axis.append(axis.pop(0)) # No arrays to concatenate raises ValueError assert_raises(ValueError, concatenate, ()) def test_concatenate_axis_None(self): a = np.arange(4, dtype=np.float64).reshape((2, 2)) b = list(range(3)) c = ['x'] r = np.concatenate((a, a), axis=None) assert_equal(r.dtype, a.dtype) assert_equal(r.ndim, 1) r = np.concatenate((a, b), axis=None) assert_equal(r.size, a.size + len(b)) assert_equal(r.dtype, a.dtype) r = np.concatenate((a, b, c), axis=None) d = array(['0.0', '1.0', '2.0', '3.0', '0', '1', '2', 'x']) assert_array_equal(r, d) def test_large_concatenate_axis_None(self): # When no axis is given, concatenate uses flattened versions. # This also had a bug with many arrays (see gh-5979). x = np.arange(1, 100) r = np.concatenate(x, None) assert_array_equal(x, r) # This should probably be deprecated: r = np.concatenate(x, 100) # axis is >= MAXDIMS assert_array_equal(x, r) def test_concatenate(self): # Test concatenate function # One sequence returns unmodified (but as array) r4 = list(range(4)) assert_array_equal(concatenate((r4,)), r4) # Any sequence assert_array_equal(concatenate((tuple(r4),)), r4) assert_array_equal(concatenate((array(r4),)), r4) # 1D default concatenation r3 = list(range(3)) assert_array_equal(concatenate((r4, r3)), r4 + r3) # Mixed sequence types assert_array_equal(concatenate((tuple(r4), r3)), r4 + r3) assert_array_equal(concatenate((array(r4), r3)), r4 + r3) # Explicit axis specification assert_array_equal(concatenate((r4, r3), 0), r4 + r3) # Including negative assert_array_equal(concatenate((r4, r3), -1), r4 + r3) # 2D a23 = array([[10, 11, 12], [13, 14, 15]]) a13 = array([[0, 1, 2]]) res = array([[10, 11, 12], [13, 14, 15], [0, 1, 2]]) assert_array_equal(concatenate((a23, a13)), res) assert_array_equal(concatenate((a23, a13), 0), res) assert_array_equal(concatenate((a23.T, a13.T), 1), res.T) assert_array_equal(concatenate((a23.T, a13.T), -1), res.T) # Arrays much match shape assert_raises(ValueError, concatenate, (a23.T, a13.T), 0) # 3D res = arange(2 * 3 * 7).reshape((2, 3, 7)) a0 = res[..., :4] a1 = res[..., 4:6] a2 = res[..., 6:] assert_array_equal(concatenate((a0, a1, a2), 2), res) assert_array_equal(concatenate((a0, a1, a2), -1), res) assert_array_equal(concatenate((a0.T, a1.T, a2.T), 0), res.T) def test_stack(): # non-iterable input assert_raises(TypeError, stack, 1) # 0d input for input_ in [(1, 2, 3), [np.int32(1), np.int32(2), np.int32(3)], [np.array(1), np.array(2), np.array(3)]]: assert_array_equal(stack(input_), [1, 2, 3]) # 1d input examples a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) r1 = array([[1, 2, 3], [4, 5, 6]]) assert_array_equal(np.stack((a, b)), r1) assert_array_equal(np.stack((a, b), axis=1), r1.T) # all input types assert_array_equal(np.stack(list([a, b])), r1) assert_array_equal(np.stack(array([a, b])), r1) # all shapes for 1d input arrays = [np.random.randn(3) for _ in range(10)] axes = [0, 1, -1, -2] expected_shapes = [(10, 3), (3, 10), (3, 10), (10, 3)] for axis, expected_shape in zip(axes, expected_shapes): assert_equal(np.stack(arrays, axis).shape, expected_shape) assert_raises_regex(np.AxisError, 'out of bounds', stack, arrays, axis=2) assert_raises_regex(np.AxisError, 'out of bounds', stack, arrays, axis=-3) # all shapes for 2d input arrays = [np.random.randn(3, 4) for _ in range(10)] axes = [0, 1, 2, -1, -2, -3] expected_shapes = [(10, 3, 4), (3, 10, 4), (3, 4, 10), (3, 4, 10), (3, 10, 4), (10, 3, 4)] for axis, expected_shape in zip(axes, expected_shapes): assert_equal(np.stack(arrays, axis).shape, expected_shape) # empty arrays assert_(stack([[], [], []]).shape == (3, 0)) assert_(stack([[], [], []], axis=1).shape == (0, 3)) # edge cases assert_raises_regex(ValueError, 'need at least one array', stack, []) assert_raises_regex(ValueError, 'must have the same shape', stack, [1, np.arange(3)]) assert_raises_regex(ValueError, 'must have the same shape', stack, [np.arange(3), 1]) assert_raises_regex(ValueError, 'must have the same shape', stack, [np.arange(3), 1], axis=1) assert_raises_regex(ValueError, 'must have the same shape', stack, [np.zeros((3, 3)), np.zeros(3)], axis=1) assert_raises_regex(ValueError, 'must have the same shape', stack, [np.arange(2), np.arange(3)]) # np.matrix m = np.matrix([[1, 2], [3, 4]]) assert_raises_regex(ValueError, 'shape too large to be a matrix', stack, [m, m]) class TestBlock(TestCase): def test_block_simple_row_wise(self): a_2d = np.ones((2, 2)) b_2d = 2 * a_2d desired = np.array([[1, 1, 2, 2], [1, 1, 2, 2]]) result = block([a_2d, b_2d]) assert_equal(desired, result) def test_block_simple_column_wise(self): a_2d = np.ones((2, 2)) b_2d = 2 * a_2d expected = np.array([[1, 1], [1, 1], [2, 2], [2, 2]]) result = block([[a_2d], [b_2d]]) assert_equal(expected, result) def test_block_with_1d_arrays_row_wise(self): # # # 1-D vectors are treated as row arrays a = np.array([1, 2, 3]) b = np.array([2, 3, 4]) expected = np.array([1, 2, 3, 2, 3, 4]) result = block([a, b]) assert_equal(expected, result) def test_block_with_1d_arrays_multiple_rows(self): a = np.array([1, 2, 3]) b = np.array([2, 3, 4]) expected = np.array([[1, 2, 3, 2, 3, 4], [1, 2, 3, 2, 3, 4]]) result = block([[a, b], [a, b]]) assert_equal(expected, result) def test_block_with_1d_arrays_column_wise(self): # # # 1-D vectors are treated as row arrays a_1d = np.array([1, 2, 3]) b_1d = np.array([2, 3, 4]) expected = np.array([[1, 2, 3], [2, 3, 4]]) result = block([[a_1d], [b_1d]]) assert_equal(expected, result) def test_block_mixed_1d_and_2d(self): a_2d = np.ones((2, 2)) b_1d = np.array([2, 2]) result = block([[a_2d], [b_1d]]) expected = np.array([[1, 1], [1, 1], [2, 2]]) assert_equal(expected, result) def test_block_complicated(self): # a bit more complicated one_2d = np.array([[1, 1, 1]]) two_2d = np.array([[2, 2, 2]]) three_2d = np.array([[3, 3, 3, 3, 3, 3]]) four_1d = np.array([4, 4, 4, 4, 4, 4]) five_0d = np.array(5) six_1d = np.array([6, 6, 6, 6, 6]) zero_2d = np.zeros((2, 6)) expected = np.array([[1, 1, 1, 2, 2, 2], [3, 3, 3, 3, 3, 3], [4, 4, 4, 4, 4, 4], [5, 6, 6, 6, 6, 6], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]) result = block([[one_2d, two_2d], [three_2d], [four_1d], [five_0d, six_1d], [zero_2d]]) assert_equal(result, expected) def test_nested(self): one = np.array([1, 1, 1]) two = np.array([[2, 2, 2], [2, 2, 2], [2, 2, 2]]) three = np.array([3, 3, 3]) four = np.array([4, 4, 4]) five = np.array(5) six = np.array([6, 6, 6, 6, 6]) zero = np.zeros((2, 6)) result = np.block([ [ np.block([ [one], [three], [four] ]), two ], [five, six], [zero] ]) expected = np.array([[1, 1, 1, 2, 2, 2], [3, 3, 3, 2, 2, 2], [4, 4, 4, 2, 2, 2], [5, 6, 6, 6, 6, 6], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]]) assert_equal(result, expected) def test_3d(self): a000 = np.ones((2, 2, 2), int) * 1 a100 = np.ones((3, 2, 2), int) * 2 a010 = np.ones((2, 3, 2), int) * 3 a001 = np.ones((2, 2, 3), int) * 4 a011 = np.ones((2, 3, 3), int) * 5 a101 = np.ones((3, 2, 3), int) * 6 a110 = np.ones((3, 3, 2), int) * 7 a111 = np.ones((3, 3, 3), int) * 8 result = np.block([ [ [a000, a001], [a010, a011], ], [ [a100, a101], [a110, a111], ] ]) expected = array([[[1, 1, 4, 4, 4], [1, 1, 4, 4, 4], [3, 3, 5, 5, 5], [3, 3, 5, 5, 5], [3, 3, 5, 5, 5]], [[1, 1, 4, 4, 4], [1, 1, 4, 4, 4], [3, 3, 5, 5, 5], [3, 3, 5, 5, 5], [3, 3, 5, 5, 5]], [[2, 2, 6, 6, 6], [2, 2, 6, 6, 6], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8]], [[2, 2, 6, 6, 6], [2, 2, 6, 6, 6], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8]], [[2, 2, 6, 6, 6], [2, 2, 6, 6, 6], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8], [7, 7, 8, 8, 8]]]) assert_array_equal(result, expected) def test_block_with_mismatched_shape(self): a = np.array([0, 0]) b = np.eye(2) assert_raises(ValueError, np.block, [a, b]) assert_raises(ValueError, np.block, [b, a]) def test_no_lists(self): assert_equal(np.block(1), np.array(1)) assert_equal(np.block(np.eye(3)), np.eye(3)) def test_invalid_nesting(self): msg = 'depths are mismatched' assert_raises_regex(ValueError, msg, np.block, [1, [2]]) assert_raises_regex(ValueError, msg, np.block, [1, []]) assert_raises_regex(ValueError, msg, np.block, [[1], 2]) assert_raises_regex(ValueError, msg, np.block, [[], 2]) assert_raises_regex(ValueError, msg, np.block, [ [[1], [2]], [[3, 4]], [5] # missing brackets ]) def test_empty_lists(self): assert_raises_regex(ValueError, 'empty', np.block, []) assert_raises_regex(ValueError, 'empty', np.block, [[]]) assert_raises_regex(ValueError, 'empty', np.block, [[1], []]) def test_tuple(self): assert_raises_regex(TypeError, 'tuple', np.block, ([1, 2], [3, 4])) assert_raises_regex(TypeError, 'tuple', np.block, [(1, 2), (3, 4)]) if __name__ == "__main__": run_module_suite()