%PDF- %PDF-
Direktori : /proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/ma/tests/ |
Current File : //proc/self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/ma/tests/test_core.py |
# pylint: disable-msg=W0400,W0511,W0611,W0612,W0614,R0201,E1102 """Tests suite for MaskedArray & subclassing. :author: Pierre Gerard-Marchant :contact: pierregm_at_uga_dot_edu """ from __future__ import division, absolute_import, print_function __author__ = "Pierre GF Gerard-Marchant" import warnings import pickle import operator import itertools from functools import reduce import numpy as np import numpy.ma.core import numpy.core.fromnumeric as fromnumeric import numpy.core.umath as umath from numpy.testing import ( TestCase, run_module_suite, assert_raises, assert_warns, suppress_warnings) from numpy import ndarray from numpy.compat import asbytes, asbytes_nested from numpy.ma.testutils import ( assert_, assert_array_equal, assert_equal, assert_almost_equal, assert_equal_records, fail_if_equal, assert_not_equal, assert_mask_equal ) from numpy.ma.core import ( MAError, MaskError, MaskType, MaskedArray, abs, absolute, add, all, allclose, allequal, alltrue, angle, anom, arange, arccos, arccosh, arctan2, arcsin, arctan, argsort, array, asarray, choose, concatenate, conjugate, cos, cosh, count, default_fill_value, diag, divide, empty, empty_like, equal, exp, flatten_mask, filled, fix_invalid, flatten_structured_array, fromflex, getmask, getmaskarray, greater, greater_equal, identity, inner, isMaskedArray, less, less_equal, log, log10, make_mask, make_mask_descr, mask_or, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, max, maximum, maximum_fill_value, min, minimum, minimum_fill_value, mod, multiply, mvoid, nomask, not_equal, ones, outer, power, product, put, putmask, ravel, repeat, reshape, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros, ) pi = np.pi suppress_copy_mask_on_assignment = suppress_warnings() suppress_copy_mask_on_assignment.filter( numpy.ma.core.MaskedArrayFutureWarning, "setting an item on a masked array which has a shared mask will not copy") class TestMaskedArray(TestCase): # Base test class for MaskedArrays. def setUp(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) def test_basicattributes(self): # Tests some basic array attributes. a = array([1, 3, 2]) b = array([1, 3, 2], mask=[1, 0, 1]) assert_equal(a.ndim, 1) assert_equal(b.ndim, 1) assert_equal(a.size, 3) assert_equal(b.size, 3) assert_equal(a.shape, (3,)) assert_equal(b.shape, (3,)) def test_basic0d(self): # Checks masking a scalar x = masked_array(0) assert_equal(str(x), '0') x = masked_array(0, mask=True) assert_equal(str(x), str(masked_print_option)) x = masked_array(0, mask=False) assert_equal(str(x), '0') x = array(0, mask=1) self.assertTrue(x.filled().dtype is x._data.dtype) def test_basic1d(self): # Test of basic array creation and properties in 1 dimension. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d self.assertTrue(not isMaskedArray(x)) self.assertTrue(isMaskedArray(xm)) self.assertTrue((xm - ym).filled(0).any()) fail_if_equal(xm.mask.astype(int), ym.mask.astype(int)) s = x.shape assert_equal(np.shape(xm), s) assert_equal(xm.shape, s) assert_equal(xm.dtype, x.dtype) assert_equal(zm.dtype, z.dtype) assert_equal(xm.size, reduce(lambda x, y:x * y, s)) assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) assert_array_equal(xm, xf) assert_array_equal(filled(xm, 1.e20), xf) assert_array_equal(x, xm) def test_basic2d(self): # Test of basic array creation and properties in 2 dimensions. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d for s in [(4, 3), (6, 2)]: x.shape = s y.shape = s xm.shape = s ym.shape = s xf.shape = s self.assertTrue(not isMaskedArray(x)) self.assertTrue(isMaskedArray(xm)) assert_equal(shape(xm), s) assert_equal(xm.shape, s) assert_equal(xm.size, reduce(lambda x, y:x * y, s)) assert_equal(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) assert_equal(xm, xf) assert_equal(filled(xm, 1.e20), xf) assert_equal(x, xm) def test_concatenate_basic(self): # Tests concatenations. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # basic concatenation assert_equal(np.concatenate((x, y)), concatenate((xm, ym))) assert_equal(np.concatenate((x, y)), concatenate((x, y))) assert_equal(np.concatenate((x, y)), concatenate((xm, y))) assert_equal(np.concatenate((x, y, x)), concatenate((x, ym, x))) def test_concatenate_alongaxis(self): # Tests concatenations. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # Concatenation along an axis s = (3, 4) x.shape = y.shape = xm.shape = ym.shape = s assert_equal(xm.mask, np.reshape(m1, s)) assert_equal(ym.mask, np.reshape(m2, s)) xmym = concatenate((xm, ym), 1) assert_equal(np.concatenate((x, y), 1), xmym) assert_equal(np.concatenate((xm.mask, ym.mask), 1), xmym._mask) x = zeros(2) y = array(ones(2), mask=[False, True]) z = concatenate((x, y)) assert_array_equal(z, [0, 0, 1, 1]) assert_array_equal(z.mask, [False, False, False, True]) z = concatenate((y, x)) assert_array_equal(z, [1, 1, 0, 0]) assert_array_equal(z.mask, [False, True, False, False]) def test_concatenate_flexible(self): # Tests the concatenation on flexible arrays. data = masked_array(list(zip(np.random.rand(10), np.arange(10))), dtype=[('a', float), ('b', int)]) test = concatenate([data[:5], data[5:]]) assert_equal_records(test, data) def test_creation_ndmin(self): # Check the use of ndmin x = array([1, 2, 3], mask=[1, 0, 0], ndmin=2) assert_equal(x.shape, (1, 3)) assert_equal(x._data, [[1, 2, 3]]) assert_equal(x._mask, [[1, 0, 0]]) def test_creation_ndmin_from_maskedarray(self): # Make sure we're not losing the original mask w/ ndmin x = array([1, 2, 3]) x[-1] = masked xx = array(x, ndmin=2, dtype=float) assert_equal(x.shape, x._mask.shape) assert_equal(xx.shape, xx._mask.shape) def test_creation_maskcreation(self): # Tests how masks are initialized at the creation of Maskedarrays. data = arange(24, dtype=float) data[[3, 6, 15]] = masked dma_1 = MaskedArray(data) assert_equal(dma_1.mask, data.mask) dma_2 = MaskedArray(dma_1) assert_equal(dma_2.mask, dma_1.mask) dma_3 = MaskedArray(dma_1, mask=[1, 0, 0, 0] * 6) fail_if_equal(dma_3.mask, dma_1.mask) x = array([1, 2, 3], mask=True) assert_equal(x._mask, [True, True, True]) x = array([1, 2, 3], mask=False) assert_equal(x._mask, [False, False, False]) y = array([1, 2, 3], mask=x._mask, copy=False) assert_(np.may_share_memory(x.mask, y.mask)) y = array([1, 2, 3], mask=x._mask, copy=True) assert_(not np.may_share_memory(x.mask, y.mask)) def test_creation_with_list_of_maskedarrays(self): # Tests creating a masked array from a list of masked arrays. x = array(np.arange(5), mask=[1, 0, 0, 0, 0]) data = array((x, x[::-1])) assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]) assert_equal(data._mask, [[1, 0, 0, 0, 0], [0, 0, 0, 0, 1]]) x.mask = nomask data = array((x, x[::-1])) assert_equal(data, [[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]]) self.assertTrue(data.mask is nomask) def test_creation_from_ndarray_with_padding(self): x = np.array([('A', 0)], dtype={'names':['f0','f1'], 'formats':['S4','i8'], 'offsets':[0,8]}) data = array(x) # used to fail due to 'V' padding field in x.dtype.descr def test_asarray(self): (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d xm.fill_value = -9999 xm._hardmask = True xmm = asarray(xm) assert_equal(xmm._data, xm._data) assert_equal(xmm._mask, xm._mask) assert_equal(xmm.fill_value, xm.fill_value) assert_equal(xmm._hardmask, xm._hardmask) def test_asarray_default_order(self): # See Issue #6646 m = np.eye(3).T self.assertFalse(m.flags.c_contiguous) new_m = asarray(m) self.assertTrue(new_m.flags.c_contiguous) def test_asarray_enforce_order(self): # See Issue #6646 m = np.eye(3).T self.assertFalse(m.flags.c_contiguous) new_m = asarray(m, order='C') self.assertTrue(new_m.flags.c_contiguous) def test_fix_invalid(self): # Checks fix_invalid. with np.errstate(invalid='ignore'): data = masked_array([np.nan, 0., 1.], mask=[0, 0, 1]) data_fixed = fix_invalid(data) assert_equal(data_fixed._data, [data.fill_value, 0., 1.]) assert_equal(data_fixed._mask, [1., 0., 1.]) def test_maskedelement(self): # Test of masked element x = arange(6) x[1] = masked self.assertTrue(str(masked) == '--') self.assertTrue(x[1] is masked) assert_equal(filled(x[1], 0), 0) def test_set_element_as_object(self): # Tests setting elements with object a = empty(1, dtype=object) x = (1, 2, 3, 4, 5) a[0] = x assert_equal(a[0], x) self.assertTrue(a[0] is x) import datetime dt = datetime.datetime.now() a[0] = dt self.assertTrue(a[0] is dt) def test_indexing(self): # Tests conversions and indexing x1 = np.array([1, 2, 4, 3]) x2 = array(x1, mask=[1, 0, 0, 0]) x3 = array(x1, mask=[0, 1, 0, 1]) x4 = array(x1) # test conversion to strings str(x2) # raises? repr(x2) # raises? assert_equal(np.sort(x1), sort(x2, endwith=False)) # tests of indexing assert_(type(x2[1]) is type(x1[1])) assert_(x1[1] == x2[1]) assert_(x2[0] is masked) assert_equal(x1[2], x2[2]) assert_equal(x1[2:5], x2[2:5]) assert_equal(x1[:], x2[:]) assert_equal(x1[1:], x3[1:]) x1[2] = 9 x2[2] = 9 assert_equal(x1, x2) x1[1:3] = 99 x2[1:3] = 99 assert_equal(x1, x2) x2[1] = masked assert_equal(x1, x2) x2[1:3] = masked assert_equal(x1, x2) x2[:] = x1 x2[1] = masked assert_(allequal(getmask(x2), array([0, 1, 0, 0]))) x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x3), array([0, 1, 1, 0]))) x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x4), array([0, 1, 1, 0]))) assert_(allequal(x4, array([1, 2, 3, 4]))) x1 = np.arange(5) * 1.0 x2 = masked_values(x1, 3.0) assert_equal(x1, x2) assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) assert_equal(3.0, x2.fill_value) x1 = array([1, 'hello', 2, 3], object) x2 = np.array([1, 'hello', 2, 3], object) s1 = x1[1] s2 = x2[1] assert_equal(type(s2), str) assert_equal(type(s1), str) assert_equal(s1, s2) assert_(x1[1:1].shape == (0,)) def test_matrix_indexing(self): # Tests conversions and indexing x1 = np.matrix([[1, 2, 3], [4, 3, 2]]) x2 = array(x1, mask=[[1, 0, 0], [0, 1, 0]]) x3 = array(x1, mask=[[0, 1, 0], [1, 0, 0]]) x4 = array(x1) # test conversion to strings str(x2) # raises? repr(x2) # raises? # tests of indexing assert_(type(x2[1, 0]) is type(x1[1, 0])) assert_(x1[1, 0] == x2[1, 0]) assert_(x2[1, 1] is masked) assert_equal(x1[0, 2], x2[0, 2]) assert_equal(x1[0, 1:], x2[0, 1:]) assert_equal(x1[:, 2], x2[:, 2]) assert_equal(x1[:], x2[:]) assert_equal(x1[1:], x3[1:]) x1[0, 2] = 9 x2[0, 2] = 9 assert_equal(x1, x2) x1[0, 1:] = 99 x2[0, 1:] = 99 assert_equal(x1, x2) x2[0, 1] = masked assert_equal(x1, x2) x2[0, 1:] = masked assert_equal(x1, x2) x2[0, :] = x1[0, :] x2[0, 1] = masked assert_(allequal(getmask(x2), np.array([[0, 1, 0], [0, 1, 0]]))) x3[1, :] = masked_array([1, 2, 3], [1, 1, 0]) assert_(allequal(getmask(x3)[1], array([1, 1, 0]))) assert_(allequal(getmask(x3[1]), array([1, 1, 0]))) x4[1, :] = masked_array([1, 2, 3], [1, 1, 0]) assert_(allequal(getmask(x4[1]), array([1, 1, 0]))) assert_(allequal(x4[1], array([1, 2, 3]))) x1 = np.matrix(np.arange(5) * 1.0) x2 = masked_values(x1, 3.0) assert_equal(x1, x2) assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) assert_equal(3.0, x2.fill_value) @suppress_copy_mask_on_assignment def test_copy(self): # Tests of some subtle points of copying and sizing. n = [0, 0, 1, 0, 0] m = make_mask(n) m2 = make_mask(m) self.assertTrue(m is m2) m3 = make_mask(m, copy=1) self.assertTrue(m is not m3) x1 = np.arange(5) y1 = array(x1, mask=m) assert_equal(y1._data.__array_interface__, x1.__array_interface__) self.assertTrue(allequal(x1, y1.data)) assert_equal(y1._mask.__array_interface__, m.__array_interface__) y1a = array(y1) self.assertTrue(y1a._data.__array_interface__ == y1._data.__array_interface__) self.assertTrue(y1a.mask is y1.mask) y2 = array(x1, mask=m) self.assertTrue(y2._data.__array_interface__ == x1.__array_interface__) self.assertTrue(y2._mask.__array_interface__ == m.__array_interface__) self.assertTrue(y2[2] is masked) y2[2] = 9 self.assertTrue(y2[2] is not masked) self.assertTrue(y2._mask.__array_interface__ != m.__array_interface__) self.assertTrue(allequal(y2.mask, 0)) y3 = array(x1 * 1.0, mask=m) self.assertTrue(filled(y3).dtype is (x1 * 1.0).dtype) x4 = arange(4) x4[2] = masked y4 = resize(x4, (8,)) assert_equal(concatenate([x4, x4]), y4) assert_equal(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0]) y5 = repeat(x4, (2, 2, 2, 2), axis=0) assert_equal(y5, [0, 0, 1, 1, 2, 2, 3, 3]) y6 = repeat(x4, 2, axis=0) assert_equal(y5, y6) y7 = x4.repeat((2, 2, 2, 2), axis=0) assert_equal(y5, y7) y8 = x4.repeat(2, 0) assert_equal(y5, y8) y9 = x4.copy() assert_equal(y9._data, x4._data) assert_equal(y9._mask, x4._mask) x = masked_array([1, 2, 3], mask=[0, 1, 0]) # Copy is False by default y = masked_array(x) assert_equal(y._data.ctypes.data, x._data.ctypes.data) assert_equal(y._mask.ctypes.data, x._mask.ctypes.data) y = masked_array(x, copy=True) assert_not_equal(y._data.ctypes.data, x._data.ctypes.data) assert_not_equal(y._mask.ctypes.data, x._mask.ctypes.data) def test_copy_on_python_builtins(self): # Tests copy works on python builtins (issue#8019) self.assertTrue(isMaskedArray(np.ma.copy([1,2,3]))) self.assertTrue(isMaskedArray(np.ma.copy((1,2,3)))) def test_copy_immutable(self): # Tests that the copy method is immutable, GitHub issue #5247 a = np.ma.array([1, 2, 3]) b = np.ma.array([4, 5, 6]) a_copy_method = a.copy b.copy assert_equal(a_copy_method(), [1, 2, 3]) def test_deepcopy(self): from copy import deepcopy a = array([0, 1, 2], mask=[False, True, False]) copied = deepcopy(a) assert_equal(copied.mask, a.mask) assert_not_equal(id(a._mask), id(copied._mask)) copied[1] = 1 assert_equal(copied.mask, [0, 0, 0]) assert_equal(a.mask, [0, 1, 0]) copied = deepcopy(a) assert_equal(copied.mask, a.mask) copied.mask[1] = False assert_equal(copied.mask, [0, 0, 0]) assert_equal(a.mask, [0, 1, 0]) def test_str_repr(self): a = array([0, 1, 2], mask=[False, True, False]) assert_equal(str(a), '[0 -- 2]') assert_equal(repr(a), 'masked_array(data = [0 -- 2],\n' ' mask = [False True False],\n' ' fill_value = 999999)\n') a = np.ma.arange(2000) a[1:50] = np.ma.masked assert_equal( repr(a), 'masked_array(data = [0 -- -- ..., 1997 1998 1999],\n' ' mask = [False True True ..., False False False],\n' ' fill_value = 999999)\n' ) def test_pickling(self): # Tests pickling for dtype in (int, float, str, object): a = arange(10).astype(dtype) a.fill_value = 999 masks = ([0, 0, 0, 1, 0, 1, 0, 1, 0, 1], # partially masked True, # Fully masked False) # Fully unmasked for mask in masks: a.mask = mask a_pickled = pickle.loads(a.dumps()) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled._data, a._data) if dtype in (object, int): assert_equal(a_pickled.fill_value, 999) else: assert_equal(a_pickled.fill_value, dtype(999)) assert_array_equal(a_pickled.mask, mask) def test_pickling_subbaseclass(self): # Test pickling w/ a subclass of ndarray a = array(np.matrix(list(range(10))), mask=[1, 0, 1, 0, 0] * 2) a_pickled = pickle.loads(a.dumps()) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) self.assertTrue(isinstance(a_pickled._data, np.matrix)) def test_pickling_maskedconstant(self): # Test pickling MaskedConstant mc = np.ma.masked mc_pickled = pickle.loads(mc.dumps()) assert_equal(mc_pickled._baseclass, mc._baseclass) assert_equal(mc_pickled._mask, mc._mask) assert_equal(mc_pickled._data, mc._data) def test_pickling_wstructured(self): # Tests pickling w/ structured array a = array([(1, 1.), (2, 2.)], mask=[(0, 0), (0, 1)], dtype=[('a', int), ('b', float)]) a_pickled = pickle.loads(a.dumps()) assert_equal(a_pickled._mask, a._mask) assert_equal(a_pickled, a) def test_pickling_keepalignment(self): # Tests pickling w/ F_CONTIGUOUS arrays a = arange(10) a.shape = (-1, 2) b = a.T test = pickle.loads(pickle.dumps(b)) assert_equal(test, b) def test_single_element_subscript(self): # Tests single element subscripts of Maskedarrays. a = array([1, 3, 2]) b = array([1, 3, 2], mask=[1, 0, 1]) assert_equal(a[0].shape, ()) assert_equal(b[0].shape, ()) assert_equal(b[1].shape, ()) def test_topython(self): # Tests some communication issues with Python. assert_equal(1, int(array(1))) assert_equal(1.0, float(array(1))) assert_equal(1, int(array([[[1]]]))) assert_equal(1.0, float(array([[1]]))) self.assertRaises(TypeError, float, array([1, 1])) with suppress_warnings() as sup: sup.filter(UserWarning, 'Warning: converting a masked element') assert_(np.isnan(float(array([1], mask=[1])))) a = array([1, 2, 3], mask=[1, 0, 0]) self.assertRaises(TypeError, lambda: float(a)) assert_equal(float(a[-1]), 3.) self.assertTrue(np.isnan(float(a[0]))) self.assertRaises(TypeError, int, a) assert_equal(int(a[-1]), 3) self.assertRaises(MAError, lambda:int(a[0])) def test_oddfeatures_1(self): # Test of other odd features x = arange(20) x = x.reshape(4, 5) x.flat[5] = 12 assert_(x[1, 0] == 12) z = x + 10j * x assert_equal(z.real, x) assert_equal(z.imag, 10 * x) assert_equal((z * conjugate(z)).real, 101 * x * x) z.imag[...] = 0.0 x = arange(10) x[3] = masked assert_(str(x[3]) == str(masked)) c = x >= 8 assert_(count(where(c, masked, masked)) == 0) assert_(shape(where(c, masked, masked)) == c.shape) z = masked_where(c, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) assert_equal(x, z) def test_oddfeatures_2(self): # Tests some more features. x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) @suppress_copy_mask_on_assignment def test_oddfeatures_3(self): # Tests some generic features atest = array([10], mask=True) btest = array([20]) idx = atest.mask atest[idx] = btest[idx] assert_equal(atest, [20]) def test_filled_with_object_dtype(self): a = np.ma.masked_all(1, dtype='O') assert_equal(a.filled('x')[0], 'x') def test_filled_with_flexible_dtype(self): # Test filled w/ flexible dtype flexi = array([(1, 1, 1)], dtype=[('i', int), ('s', '|S8'), ('f', float)]) flexi[0] = masked assert_equal(flexi.filled(), np.array([(default_fill_value(0), default_fill_value('0'), default_fill_value(0.),)], dtype=flexi.dtype)) flexi[0] = masked assert_equal(flexi.filled(1), np.array([(1, '1', 1.)], dtype=flexi.dtype)) def test_filled_with_mvoid(self): # Test filled w/ mvoid ndtype = [('a', int), ('b', float)] a = mvoid((1, 2.), mask=[(0, 1)], dtype=ndtype) # Filled using default test = a.filled() assert_equal(tuple(test), (1, default_fill_value(1.))) # Explicit fill_value test = a.filled((-1, -1)) assert_equal(tuple(test), (1, -1)) # Using predefined filling values a.fill_value = (-999, -999) assert_equal(tuple(a.filled()), (1, -999)) def test_filled_with_nested_dtype(self): # Test filled w/ nested dtype ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] a = array([(1, (1, 1)), (2, (2, 2))], mask=[(0, (1, 0)), (0, (0, 1))], dtype=ndtype) test = a.filled(0) control = np.array([(1, (0, 1)), (2, (2, 0))], dtype=ndtype) assert_equal(test, control) test = a['B'].filled(0) control = np.array([(0, 1), (2, 0)], dtype=a['B'].dtype) assert_equal(test, control) # test if mask gets set correctly (see #6760) Z = numpy.ma.zeros(2, numpy.dtype([("A", "(2,2)i1,(2,2)i1", (2,2))])) assert_equal(Z.data.dtype, numpy.dtype([('A', [('f0', 'i1', (2, 2)), ('f1', 'i1', (2, 2))], (2, 2))])) assert_equal(Z.mask.dtype, numpy.dtype([('A', [('f0', '?', (2, 2)), ('f1', '?', (2, 2))], (2, 2))])) def test_filled_with_f_order(self): # Test filled w/ F-contiguous array a = array(np.array([(0, 1, 2), (4, 5, 6)], order='F'), mask=np.array([(0, 0, 1), (1, 0, 0)], order='F'), order='F') # this is currently ignored self.assertTrue(a.flags['F_CONTIGUOUS']) self.assertTrue(a.filled(0).flags['F_CONTIGUOUS']) def test_optinfo_propagation(self): # Checks that _optinfo dictionary isn't back-propagated x = array([1, 2, 3, ], dtype=float) x._optinfo['info'] = '???' y = x.copy() assert_equal(y._optinfo['info'], '???') y._optinfo['info'] = '!!!' assert_equal(x._optinfo['info'], '???') def test_fancy_printoptions(self): # Test printing a masked array w/ fancy dtype. fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])]) test = array([(1, (2, 3.0)), (4, (5, 6.0))], mask=[(1, (0, 1)), (0, (1, 0))], dtype=fancydtype) control = "[(--, (2, --)) (4, (--, 6.0))]" assert_equal(str(test), control) # Test 0-d array with multi-dimensional dtype t_2d0 = masked_array(data = (0, [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], 0.0), mask = (False, [[True, False, True], [False, False, True]], False), dtype = "int, (2,3)float, float") control = "(0, [[--, 0.0, --], [0.0, 0.0, --]], 0.0)" assert_equal(str(t_2d0), control) def test_flatten_structured_array(self): # Test flatten_structured_array on arrays # On ndarray ndtype = [('a', int), ('b', float)] a = np.array([(1, 1), (2, 2)], dtype=ndtype) test = flatten_structured_array(a) control = np.array([[1., 1.], [2., 2.]], dtype=np.float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) # On masked_array a = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = flatten_structured_array(a) control = array([[1., 1.], [2., 2.]], mask=[[0, 1], [1, 0]], dtype=np.float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) assert_equal(test.mask, control.mask) # On masked array with nested structure ndtype = [('a', int), ('b', [('ba', int), ('bb', float)])] a = array([(1, (1, 1.1)), (2, (2, 2.2))], mask=[(0, (1, 0)), (1, (0, 1))], dtype=ndtype) test = flatten_structured_array(a) control = array([[1., 1., 1.1], [2., 2., 2.2]], mask=[[0, 1, 0], [1, 0, 1]], dtype=np.float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) assert_equal(test.mask, control.mask) # Keeping the initial shape ndtype = [('a', int), ('b', float)] a = np.array([[(1, 1), ], [(2, 2), ]], dtype=ndtype) test = flatten_structured_array(a) control = np.array([[[1., 1.], ], [[2., 2.], ]], dtype=np.float) assert_equal(test, control) assert_equal(test.dtype, control.dtype) def test_void0d(self): # Test creating a mvoid object ndtype = [('a', int), ('b', int)] a = np.array([(1, 2,)], dtype=ndtype)[0] f = mvoid(a) assert_(isinstance(f, mvoid)) a = masked_array([(1, 2)], mask=[(1, 0)], dtype=ndtype)[0] assert_(isinstance(a, mvoid)) a = masked_array([(1, 2), (1, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) f = mvoid(a._data[0], a._mask[0]) assert_(isinstance(f, mvoid)) def test_mvoid_getitem(self): # Test mvoid.__getitem__ ndtype = [('a', int), ('b', int)] a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)], dtype=ndtype) # w/o mask f = a[0] self.assertTrue(isinstance(f, mvoid)) assert_equal((f[0], f['a']), (1, 1)) assert_equal(f['b'], 2) # w/ mask f = a[1] self.assertTrue(isinstance(f, mvoid)) self.assertTrue(f[0] is masked) self.assertTrue(f['a'] is masked) assert_equal(f[1], 4) # exotic dtype A = masked_array(data=[([0,1],)], mask=[([True, False],)], dtype=[("A", ">i2", (2,))]) assert_equal(A[0]["A"], A["A"][0]) assert_equal(A[0]["A"], masked_array(data=[0, 1], mask=[True, False], dtype=">i2")) def test_mvoid_iter(self): # Test iteration on __getitem__ ndtype = [('a', int), ('b', int)] a = masked_array([(1, 2,), (3, 4)], mask=[(0, 0), (1, 0)], dtype=ndtype) # w/o mask assert_equal(list(a[0]), [1, 2]) # w/ mask assert_equal(list(a[1]), [masked, 4]) def test_mvoid_print(self): # Test printing a mvoid mx = array([(1, 1), (2, 2)], dtype=[('a', int), ('b', int)]) assert_equal(str(mx[0]), "(1, 1)") mx['b'][0] = masked ini_display = masked_print_option._display masked_print_option.set_display("-X-") try: assert_equal(str(mx[0]), "(1, -X-)") assert_equal(repr(mx[0]), "(1, -X-)") finally: masked_print_option.set_display(ini_display) # also check if there are object datatypes (see gh-7493) mx = array([(1,), (2,)], dtype=[('a', 'O')]) assert_equal(str(mx[0]), "(1,)") def test_mvoid_multidim_print(self): # regression test for gh-6019 t_ma = masked_array(data = [([1, 2, 3],)], mask = [([False, True, False],)], fill_value = ([999999, 999999, 999999],), dtype = [('a', '<i4', (3,))]) assert_(str(t_ma[0]) == "([1, --, 3],)") assert_(repr(t_ma[0]) == "([1, --, 3],)") # additional tests with structured arrays t_2d = masked_array(data = [([[1, 2], [3,4]],)], mask = [([[False, True], [True, False]],)], dtype = [('a', '<i4', (2,2))]) assert_(str(t_2d[0]) == "([[1, --], [--, 4]],)") assert_(repr(t_2d[0]) == "([[1, --], [--, 4]],)") t_0d = masked_array(data = [(1,2)], mask = [(True,False)], dtype = [('a', '<i4'), ('b', '<i4')]) assert_(str(t_0d[0]) == "(--, 2)") assert_(repr(t_0d[0]) == "(--, 2)") t_2d = masked_array(data = [([[1, 2], [3,4]], 1)], mask = [([[False, True], [True, False]], False)], dtype = [('a', '<i4', (2,2)), ('b', float)]) assert_(str(t_2d[0]) == "([[1, --], [--, 4]], 1.0)") assert_(repr(t_2d[0]) == "([[1, --], [--, 4]], 1.0)") t_ne = masked_array(data=[(1, (1, 1))], mask=[(True, (True, False))], dtype = [('a', '<i4'), ('b', 'i4,i4')]) assert_(str(t_ne[0]) == "(--, (--, 1))") assert_(repr(t_ne[0]) == "(--, (--, 1))") def test_object_with_array(self): mx1 = masked_array([1.], mask=[True]) mx2 = masked_array([1., 2.]) mx = masked_array([mx1, mx2], mask=[False, True]) assert_(mx[0] is mx1) assert_(mx[1] is not mx2) assert_(np.all(mx[1].data == mx2.data)) assert_(np.all(mx[1].mask)) # check that we return a view. mx[1].data[0] = 0. assert_(mx2[0] == 0.) class TestMaskedArrayArithmetic(TestCase): # Base test class for MaskedArrays. def setUp(self): # Base data definition. x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = masked_array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore') def tearDown(self): np.seterr(**self.err_status) def test_basic_arithmetic(self): # Test of basic arithmetic. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d a2d = array([[1, 2], [0, 4]]) a2dm = masked_array(a2d, [[0, 0], [1, 0]]) assert_equal(a2d * a2d, a2d * a2dm) assert_equal(a2d + a2d, a2d + a2dm) assert_equal(a2d - a2d, a2d - a2dm) for s in [(12,), (4, 3), (2, 6)]: x = x.reshape(s) y = y.reshape(s) xm = xm.reshape(s) ym = ym.reshape(s) xf = xf.reshape(s) assert_equal(-x, -xm) assert_equal(x + y, xm + ym) assert_equal(x - y, xm - ym) assert_equal(x * y, xm * ym) assert_equal(x / y, xm / ym) assert_equal(a10 + y, a10 + ym) assert_equal(a10 - y, a10 - ym) assert_equal(a10 * y, a10 * ym) assert_equal(a10 / y, a10 / ym) assert_equal(x + a10, xm + a10) assert_equal(x - a10, xm - a10) assert_equal(x * a10, xm * a10) assert_equal(x / a10, xm / a10) assert_equal(x ** 2, xm ** 2) assert_equal(abs(x) ** 2.5, abs(xm) ** 2.5) assert_equal(x ** y, xm ** ym) assert_equal(np.add(x, y), add(xm, ym)) assert_equal(np.subtract(x, y), subtract(xm, ym)) assert_equal(np.multiply(x, y), multiply(xm, ym)) assert_equal(np.divide(x, y), divide(xm, ym)) def test_divide_on_different_shapes(self): x = arange(6, dtype=float) x.shape = (2, 3) y = arange(3, dtype=float) z = x / y assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]]) assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]]) z = x / y[None,:] assert_equal(z, [[-1., 1., 1.], [-1., 4., 2.5]]) assert_equal(z.mask, [[1, 0, 0], [1, 0, 0]]) y = arange(2, dtype=float) z = x / y[:, None] assert_equal(z, [[-1., -1., -1.], [3., 4., 5.]]) assert_equal(z.mask, [[1, 1, 1], [0, 0, 0]]) def test_mixed_arithmetic(self): # Tests mixed arithmetics. na = np.array([1]) ma = array([1]) self.assertTrue(isinstance(na + ma, MaskedArray)) self.assertTrue(isinstance(ma + na, MaskedArray)) def test_limits_arithmetic(self): tiny = np.finfo(float).tiny a = array([tiny, 1. / tiny, 0.]) assert_equal(getmaskarray(a / 2), [0, 0, 0]) assert_equal(getmaskarray(2 / a), [1, 0, 1]) def test_masked_singleton_arithmetic(self): # Tests some scalar arithmetics on MaskedArrays. # Masked singleton should remain masked no matter what xm = array(0, mask=1) self.assertTrue((1 / array(0)).mask) self.assertTrue((1 + xm).mask) self.assertTrue((-xm).mask) self.assertTrue(maximum(xm, xm).mask) self.assertTrue(minimum(xm, xm).mask) def test_masked_singleton_equality(self): # Tests (in)equality on masked singleton a = array([1, 2, 3], mask=[1, 1, 0]) assert_((a[0] == 0) is masked) assert_((a[0] != 0) is masked) assert_equal((a[-1] == 0), False) assert_equal((a[-1] != 0), True) def test_arithmetic_with_masked_singleton(self): # Checks that there's no collapsing to masked x = masked_array([1, 2]) y = x * masked assert_equal(y.shape, x.shape) assert_equal(y._mask, [True, True]) y = x[0] * masked assert_(y is masked) y = x + masked assert_equal(y.shape, x.shape) assert_equal(y._mask, [True, True]) def test_arithmetic_with_masked_singleton_on_1d_singleton(self): # Check that we're not losing the shape of a singleton x = masked_array([1, ]) y = x + masked assert_equal(y.shape, x.shape) assert_equal(y.mask, [True, ]) def test_scalar_arithmetic(self): x = array(0, mask=0) assert_equal(x.filled().ctypes.data, x.ctypes.data) # Make sure we don't lose the shape in some circumstances xm = array((0, 0)) / 0. assert_equal(xm.shape, (2,)) assert_equal(xm.mask, [1, 1]) def test_basic_ufuncs(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.cos(x), cos(xm)) assert_equal(np.cosh(x), cosh(xm)) assert_equal(np.sin(x), sin(xm)) assert_equal(np.sinh(x), sinh(xm)) assert_equal(np.tan(x), tan(xm)) assert_equal(np.tanh(x), tanh(xm)) assert_equal(np.sqrt(abs(x)), sqrt(xm)) assert_equal(np.log(abs(x)), log(xm)) assert_equal(np.log10(abs(x)), log10(xm)) assert_equal(np.exp(x), exp(xm)) assert_equal(np.arcsin(z), arcsin(zm)) assert_equal(np.arccos(z), arccos(zm)) assert_equal(np.arctan(z), arctan(zm)) assert_equal(np.arctan2(x, y), arctan2(xm, ym)) assert_equal(np.absolute(x), absolute(xm)) assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym)) assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True)) assert_equal(np.equal(x, y), equal(xm, ym)) assert_equal(np.not_equal(x, y), not_equal(xm, ym)) assert_equal(np.less(x, y), less(xm, ym)) assert_equal(np.greater(x, y), greater(xm, ym)) assert_equal(np.less_equal(x, y), less_equal(xm, ym)) assert_equal(np.greater_equal(x, y), greater_equal(xm, ym)) assert_equal(np.conjugate(x), conjugate(xm)) def test_count_func(self): # Tests count assert_equal(1, count(1)) assert_equal(0, array(1, mask=[1])) ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) res = count(ott) self.assertTrue(res.dtype.type is np.intp) assert_equal(3, res) ott = ott.reshape((2, 2)) res = count(ott) assert_(res.dtype.type is np.intp) assert_equal(3, res) res = count(ott, 0) assert_(isinstance(res, ndarray)) assert_equal([1, 2], res) assert_(getmask(res) is nomask) ott = array([0., 1., 2., 3.]) res = count(ott, 0) assert_(isinstance(res, ndarray)) assert_(res.dtype.type is np.intp) assert_raises(np.AxisError, ott.count, axis=1) def test_count_on_python_builtins(self): # Tests count works on python builtins (issue#8019) assert_equal(3, count([1,2,3])) assert_equal(2, count((1,2))) def test_minmax_func(self): # Tests minimum and maximum. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d # max doesn't work if shaped xr = np.ravel(x) xmr = ravel(xm) # following are true because of careful selection of data assert_equal(max(xr), maximum.reduce(xmr)) assert_equal(min(xr), minimum.reduce(xmr)) assert_equal(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3]) assert_equal(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9]) x = arange(5) y = arange(5) - 2 x[3] = masked y[0] = masked assert_equal(minimum(x, y), where(less(x, y), x, y)) assert_equal(maximum(x, y), where(greater(x, y), x, y)) assert_(minimum.reduce(x) == 0) assert_(maximum.reduce(x) == 4) x = arange(4).reshape(2, 2) x[-1, -1] = masked assert_equal(maximum.reduce(x, axis=None), 2) def test_minimummaximum_func(self): a = np.ones((2, 2)) aminimum = minimum(a, a) self.assertTrue(isinstance(aminimum, MaskedArray)) assert_equal(aminimum, np.minimum(a, a)) aminimum = minimum.outer(a, a) self.assertTrue(isinstance(aminimum, MaskedArray)) assert_equal(aminimum, np.minimum.outer(a, a)) amaximum = maximum(a, a) self.assertTrue(isinstance(amaximum, MaskedArray)) assert_equal(amaximum, np.maximum(a, a)) amaximum = maximum.outer(a, a) self.assertTrue(isinstance(amaximum, MaskedArray)) assert_equal(amaximum, np.maximum.outer(a, a)) def test_minmax_reduce(self): # Test np.min/maximum.reduce on array w/ full False mask a = array([1, 2, 3], mask=[False, False, False]) b = np.maximum.reduce(a) assert_equal(b, 3) def test_minmax_funcs_with_output(self): # Tests the min/max functions with explicit outputs mask = np.random.rand(12).round() xm = array(np.random.uniform(0, 10, 12), mask=mask) xm.shape = (3, 4) for funcname in ('min', 'max'): # Initialize npfunc = getattr(np, funcname) mafunc = getattr(numpy.ma.core, funcname) # Use the np version nout = np.empty((4,), dtype=int) try: result = npfunc(xm, axis=0, out=nout) except MaskError: pass nout = np.empty((4,), dtype=float) result = npfunc(xm, axis=0, out=nout) self.assertTrue(result is nout) # Use the ma version nout.fill(-999) result = mafunc(xm, axis=0, out=nout) self.assertTrue(result is nout) def test_minmax_methods(self): # Additional tests on max/min (_, _, _, _, _, xm, _, _, _, _) = self.d xm.shape = (xm.size,) assert_equal(xm.max(), 10) self.assertTrue(xm[0].max() is masked) self.assertTrue(xm[0].max(0) is masked) self.assertTrue(xm[0].max(-1) is masked) assert_equal(xm.min(), -10.) self.assertTrue(xm[0].min() is masked) self.assertTrue(xm[0].min(0) is masked) self.assertTrue(xm[0].min(-1) is masked) assert_equal(xm.ptp(), 20.) self.assertTrue(xm[0].ptp() is masked) self.assertTrue(xm[0].ptp(0) is masked) self.assertTrue(xm[0].ptp(-1) is masked) x = array([1, 2, 3], mask=True) self.assertTrue(x.min() is masked) self.assertTrue(x.max() is masked) self.assertTrue(x.ptp() is masked) def test_addsumprod(self): # Tests add, sum, product. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.add.reduce(x), add.reduce(x)) assert_equal(np.add.accumulate(x), add.accumulate(x)) assert_equal(4, sum(array(4), axis=0)) assert_equal(4, sum(array(4), axis=0)) assert_equal(np.sum(x, axis=0), sum(x, axis=0)) assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)) assert_equal(np.sum(x, 0), sum(x, 0)) assert_equal(np.product(x, axis=0), product(x, axis=0)) assert_equal(np.product(x, 0), product(x, 0)) assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0)) s = (3, 4) x.shape = y.shape = xm.shape = ym.shape = s if len(s) > 1: assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1)) assert_equal(np.add.reduce(x, 1), add.reduce(x, 1)) assert_equal(np.sum(x, 1), sum(x, 1)) assert_equal(np.product(x, 1), product(x, 1)) def test_binops_d2D(self): # Test binary operations on 2D data a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]]) b = array([[2., 3.], [4., 5.], [6., 7.]]) test = a * b control = array([[2., 3.], [2., 2.], [3., 3.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b * a control = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) a = array([[1.], [2.], [3.]]) b = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [0, 0], [0, 1]]) test = a * b control = array([[2, 3], [8, 10], [18, 3]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b * a control = array([[2, 3], [8, 10], [18, 7]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) def test_domained_binops_d2D(self): # Test domained binary operations on 2D data a = array([[1.], [2.], [3.]], mask=[[False], [True], [True]]) b = array([[2., 3.], [4., 5.], [6., 7.]]) test = a / b control = array([[1. / 2., 1. / 3.], [2., 2.], [3., 3.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b / a control = array([[2. / 1., 3. / 1.], [4., 5.], [6., 7.]], mask=[[0, 0], [1, 1], [1, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) a = array([[1.], [2.], [3.]]) b = array([[2., 3.], [4., 5.], [6., 7.]], mask=[[0, 0], [0, 0], [0, 1]]) test = a / b control = array([[1. / 2, 1. / 3], [2. / 4, 2. / 5], [3. / 6, 3]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) test = b / a control = array([[2 / 1., 3 / 1.], [4 / 2., 5 / 2.], [6 / 3., 7]], mask=[[0, 0], [0, 0], [0, 1]]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) def test_noshrinking(self): # Check that we don't shrink a mask when not wanted # Binary operations a = masked_array([1., 2., 3.], mask=[False, False, False], shrink=False) b = a + 1 assert_equal(b.mask, [0, 0, 0]) # In place binary operation a += 1 assert_equal(a.mask, [0, 0, 0]) # Domained binary operation b = a / 1. assert_equal(b.mask, [0, 0, 0]) # In place binary operation a /= 1. assert_equal(a.mask, [0, 0, 0]) def test_ufunc_nomask(self): # check the case ufuncs should set the mask to false m = np.ma.array([1]) # check we don't get array([False], dtype=bool) assert_equal(np.true_divide(m, 5).mask.shape, ()) def test_noshink_on_creation(self): # Check that the mask is not shrunk on array creation when not wanted a = np.ma.masked_values([1., 2.5, 3.1], 1.5, shrink=False) assert_equal(a.mask, [0, 0, 0]) def test_mod(self): # Tests mod (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(mod(x, y), mod(xm, ym)) test = mod(ym, xm) assert_equal(test, np.mod(ym, xm)) assert_equal(test.mask, mask_or(xm.mask, ym.mask)) test = mod(xm, ym) assert_equal(test, np.mod(xm, ym)) assert_equal(test.mask, mask_or(mask_or(xm.mask, ym.mask), (ym == 0))) def test_TakeTransposeInnerOuter(self): # Test of take, transpose, inner, outer products x = arange(24) y = np.arange(24) x[5:6] = masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert_equal(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1))) assert_equal(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1)) assert_equal(np.inner(filled(x, 0), filled(y, 0)), inner(x, y)) assert_equal(np.outer(filled(x, 0), filled(y, 0)), outer(x, y)) y = array(['abc', 1, 'def', 2, 3], object) y[2] = masked t = take(y, [0, 3, 4]) assert_(t[0] == 'abc') assert_(t[1] == 2) assert_(t[2] == 3) def test_imag_real(self): # Check complex xx = array([1 + 10j, 20 + 2j], mask=[1, 0]) assert_equal(xx.imag, [10, 2]) assert_equal(xx.imag.filled(), [1e+20, 2]) assert_equal(xx.imag.dtype, xx._data.imag.dtype) assert_equal(xx.real, [1, 20]) assert_equal(xx.real.filled(), [1e+20, 20]) assert_equal(xx.real.dtype, xx._data.real.dtype) def test_methods_with_output(self): xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked funclist = ('sum', 'prod', 'var', 'std', 'max', 'min', 'ptp', 'mean',) for funcname in funclist: npfunc = getattr(np, funcname) xmmeth = getattr(xm, funcname) # A ndarray as explicit input output = np.empty(4, dtype=float) output.fill(-9999) result = npfunc(xm, axis=0, out=output) # ... the result should be the given output assert_(result is output) assert_equal(result, xmmeth(axis=0, out=output)) output = empty(4, dtype=int) result = xmmeth(axis=0, out=output) assert_(result is output) assert_(output[0] is masked) def test_count_mean_with_matrix(self): m = np.ma.array(np.matrix([[1,2],[3,4]]), mask=np.zeros((2,2))) assert_equal(m.count(axis=0).shape, (1,2)) assert_equal(m.count(axis=1).shape, (2,1)) #make sure broadcasting inside mean and var work assert_equal(m.mean(axis=0), [[2., 3.]]) assert_equal(m.mean(axis=1), [[1.5], [3.5]]) def test_eq_on_structured(self): # Test the equality of structured arrays ndtype = [('A', int), ('B', int)] a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype) test = (a == a) assert_equal(test.data, [True, True]) assert_equal(test.mask, [False, False]) test = (a == a[0]) assert_equal(test.data, [True, False]) assert_equal(test.mask, [False, False]) b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) test = (a == b) assert_equal(test.data, [False, True]) assert_equal(test.mask, [True, False]) test = (a[0] == b) assert_equal(test.data, [False, False]) assert_equal(test.mask, [True, False]) b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = (a == b) assert_equal(test.data, [True, True]) assert_equal(test.mask, [False, False]) # complicated dtype, 2-dimensional array. ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] a = array([[(1, (1, 1)), (2, (2, 2))], [(3, (3, 3)), (4, (4, 4))]], mask=[[(0, (1, 0)), (0, (0, 1))], [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype) test = (a[0, 0] == a) assert_equal(test.data, [[True, False], [False, False]]) assert_equal(test.mask, [[False, False], [False, True]]) def test_ne_on_structured(self): # Test the equality of structured arrays ndtype = [('A', int), ('B', int)] a = array([(1, 1), (2, 2)], mask=[(0, 1), (0, 0)], dtype=ndtype) test = (a != a) assert_equal(test.data, [False, False]) assert_equal(test.mask, [False, False]) test = (a != a[0]) assert_equal(test.data, [False, True]) assert_equal(test.mask, [False, False]) b = array([(1, 1), (2, 2)], mask=[(1, 0), (0, 0)], dtype=ndtype) test = (a != b) assert_equal(test.data, [True, False]) assert_equal(test.mask, [True, False]) test = (a[0] != b) assert_equal(test.data, [True, True]) assert_equal(test.mask, [True, False]) b = array([(1, 1), (2, 2)], mask=[(0, 1), (1, 0)], dtype=ndtype) test = (a != b) assert_equal(test.data, [False, False]) assert_equal(test.mask, [False, False]) # complicated dtype, 2-dimensional array. ndtype = [('A', int), ('B', [('BA', int), ('BB', int)])] a = array([[(1, (1, 1)), (2, (2, 2))], [(3, (3, 3)), (4, (4, 4))]], mask=[[(0, (1, 0)), (0, (0, 1))], [(1, (0, 0)), (1, (1, 1))]], dtype=ndtype) test = (a[0, 0] != a) assert_equal(test.data, [[False, True], [True, True]]) assert_equal(test.mask, [[False, False], [False, True]]) def test_eq_ne_structured_extra(self): # ensure simple examples are symmetric and make sense. # from https://github.com/numpy/numpy/pull/8590#discussion_r101126465 dt = np.dtype('i4,i4') for m1 in (mvoid((1, 2), mask=(0, 0), dtype=dt), mvoid((1, 2), mask=(0, 1), dtype=dt), mvoid((1, 2), mask=(1, 0), dtype=dt), mvoid((1, 2), mask=(1, 1), dtype=dt)): ma1 = m1.view(MaskedArray) r1 = ma1.view('2i4') for m2 in (np.array((1, 1), dtype=dt), mvoid((1, 1), dtype=dt), mvoid((1, 0), mask=(0, 1), dtype=dt), mvoid((3, 2), mask=(0, 1), dtype=dt)): ma2 = m2.view(MaskedArray) r2 = ma2.view('2i4') eq_expected = (r1 == r2).all() assert_equal(m1 == m2, eq_expected) assert_equal(m2 == m1, eq_expected) assert_equal(ma1 == m2, eq_expected) assert_equal(m1 == ma2, eq_expected) assert_equal(ma1 == ma2, eq_expected) # Also check it is the same if we do it element by element. el_by_el = [m1[name] == m2[name] for name in dt.names] assert_equal(array(el_by_el, dtype=bool).all(), eq_expected) ne_expected = (r1 != r2).any() assert_equal(m1 != m2, ne_expected) assert_equal(m2 != m1, ne_expected) assert_equal(ma1 != m2, ne_expected) assert_equal(m1 != ma2, ne_expected) assert_equal(ma1 != ma2, ne_expected) el_by_el = [m1[name] != m2[name] for name in dt.names] assert_equal(array(el_by_el, dtype=bool).any(), ne_expected) def test_eq_with_None(self): # Really, comparisons with None should not be done, but check them # anyway. Note that pep8 will flag these tests. # Deprecation is in place for arrays, and when it happens this # test will fail (and have to be changed accordingly). # With partial mask with suppress_warnings() as sup: sup.filter(FutureWarning, "Comparison to `None`") a = array([None, 1], mask=[0, 1]) assert_equal(a == None, array([True, False], mask=[0, 1])) assert_equal(a.data == None, [True, False]) assert_equal(a != None, array([False, True], mask=[0, 1])) # With nomask a = array([None, 1], mask=False) assert_equal(a == None, [True, False]) assert_equal(a != None, [False, True]) # With complete mask a = array([None, 2], mask=True) assert_equal(a == None, array([False, True], mask=True)) assert_equal(a != None, array([True, False], mask=True)) # Fully masked, even comparison to None should return "masked" a = masked assert_equal(a == None, masked) def test_eq_with_scalar(self): a = array(1) assert_equal(a == 1, True) assert_equal(a == 0, False) assert_equal(a != 1, False) assert_equal(a != 0, True) b = array(1, mask=True) assert_equal(b == 0, masked) assert_equal(b == 1, masked) assert_equal(b != 0, masked) assert_equal(b != 1, masked) def test_eq_different_dimensions(self): m1 = array([1, 1], mask=[0, 1]) # test comparison with both masked and regular arrays. for m2 in (array([[0, 1], [1, 2]]), np.array([[0, 1], [1, 2]])): test = (m1 == m2) assert_equal(test.data, [[False, False], [True, False]]) assert_equal(test.mask, [[False, True], [False, True]]) def test_numpyarithmetics(self): # Check that the mask is not back-propagated when using numpy functions a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1]) control = masked_array([np.nan, np.nan, 0, np.log(2), -1], mask=[1, 1, 0, 0, 1]) test = log(a) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(a.mask, [0, 0, 0, 0, 1]) test = np.log(a) assert_equal(test, control) assert_equal(test.mask, control.mask) assert_equal(a.mask, [0, 0, 0, 0, 1]) class TestMaskedArrayAttributes(TestCase): def test_keepmask(self): # Tests the keep mask flag x = masked_array([1, 2, 3], mask=[1, 0, 0]) mx = masked_array(x) assert_equal(mx.mask, x.mask) mx = masked_array(x, mask=[0, 1, 0], keep_mask=False) assert_equal(mx.mask, [0, 1, 0]) mx = masked_array(x, mask=[0, 1, 0], keep_mask=True) assert_equal(mx.mask, [1, 1, 0]) # We default to true mx = masked_array(x, mask=[0, 1, 0]) assert_equal(mx.mask, [1, 1, 0]) def test_hardmask(self): # Test hard_mask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d, mask=m, hard_mask=True) # We need to copy, to avoid updating d in xh ! xs = array(d, mask=m, hard_mask=False, copy=True) xh[[1, 4]] = [10, 40] xs[[1, 4]] = [10, 40] assert_equal(xh._data, [0, 10, 2, 3, 4]) assert_equal(xs._data, [0, 10, 2, 3, 40]) assert_equal(xs.mask, [0, 0, 0, 1, 0]) self.assertTrue(xh._hardmask) self.assertTrue(not xs._hardmask) xh[1:4] = [10, 20, 30] xs[1:4] = [10, 20, 30] assert_equal(xh._data, [0, 10, 20, 3, 4]) assert_equal(xs._data, [0, 10, 20, 30, 40]) assert_equal(xs.mask, nomask) xh[0] = masked xs[0] = masked assert_equal(xh.mask, [1, 0, 0, 1, 1]) assert_equal(xs.mask, [1, 0, 0, 0, 0]) xh[:] = 1 xs[:] = 1 assert_equal(xh._data, [0, 1, 1, 3, 4]) assert_equal(xs._data, [1, 1, 1, 1, 1]) assert_equal(xh.mask, [1, 0, 0, 1, 1]) assert_equal(xs.mask, nomask) # Switch to soft mask xh.soften_mask() xh[:] = arange(5) assert_equal(xh._data, [0, 1, 2, 3, 4]) assert_equal(xh.mask, nomask) # Switch back to hard mask xh.harden_mask() xh[xh < 3] = masked assert_equal(xh._data, [0, 1, 2, 3, 4]) assert_equal(xh._mask, [1, 1, 1, 0, 0]) xh[filled(xh > 1, False)] = 5 assert_equal(xh._data, [0, 1, 2, 5, 5]) assert_equal(xh._mask, [1, 1, 1, 0, 0]) xh = array([[1, 2], [3, 4]], mask=[[1, 0], [0, 0]], hard_mask=True) xh[0] = 0 assert_equal(xh._data, [[1, 0], [3, 4]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) xh[-1, -1] = 5 assert_equal(xh._data, [[1, 0], [3, 5]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) xh[filled(xh < 5, False)] = 2 assert_equal(xh._data, [[1, 2], [2, 5]]) assert_equal(xh._mask, [[1, 0], [0, 0]]) def test_hardmask_again(self): # Another test of hardmask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d, mask=m, hard_mask=True) xh[4:5] = 999 xh[0:1] = 999 assert_equal(xh._data, [999, 1, 2, 3, 4]) def test_hardmask_oncemore_yay(self): # OK, yet another test of hardmask # Make sure that harden_mask/soften_mask//unshare_mask returns self a = array([1, 2, 3], mask=[1, 0, 0]) b = a.harden_mask() assert_equal(a, b) b[0] = 0 assert_equal(a, b) assert_equal(b, array([1, 2, 3], mask=[1, 0, 0])) a = b.soften_mask() a[0] = 0 assert_equal(a, b) assert_equal(b, array([0, 2, 3], mask=[0, 0, 0])) def test_smallmask(self): # Checks the behaviour of _smallmask a = arange(10) a[1] = masked a[1] = 1 assert_equal(a._mask, nomask) a = arange(10) a._smallmask = False a[1] = masked a[1] = 1 assert_equal(a._mask, zeros(10)) def test_shrink_mask(self): # Tests .shrink_mask() a = array([1, 2, 3], mask=[0, 0, 0]) b = a.shrink_mask() assert_equal(a, b) assert_equal(a.mask, nomask) def test_flat(self): # Test that flat can return all types of items [#4585, #4615] # test simple access test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) assert_equal(test.flat[1], 2) assert_equal(test.flat[2], masked) self.assertTrue(np.all(test.flat[0:2] == test[0, 0:2])) # Test flat on masked_matrices test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) test.flat = masked_array([3, 2, 1], mask=[1, 0, 0]) control = masked_array(np.matrix([[3, 2, 1]]), mask=[1, 0, 0]) assert_equal(test, control) # Test setting test = masked_array(np.matrix([[1, 2, 3]]), mask=[0, 0, 1]) testflat = test.flat testflat[:] = testflat[[2, 1, 0]] assert_equal(test, control) testflat[0] = 9 assert_equal(test[0, 0], 9) # test 2-D record array # ... on structured array w/ masked records x = array([[(1, 1.1, 'one'), (2, 2.2, 'two'), (3, 3.3, 'thr')], [(4, 4.4, 'fou'), (5, 5.5, 'fiv'), (6, 6.6, 'six')]], dtype=[('a', int), ('b', float), ('c', '|S8')]) x['a'][0, 1] = masked x['b'][1, 0] = masked x['c'][0, 2] = masked x[-1, -1] = masked xflat = x.flat assert_equal(xflat[0], x[0, 0]) assert_equal(xflat[1], x[0, 1]) assert_equal(xflat[2], x[0, 2]) assert_equal(xflat[:3], x[0]) assert_equal(xflat[3], x[1, 0]) assert_equal(xflat[4], x[1, 1]) assert_equal(xflat[5], x[1, 2]) assert_equal(xflat[3:], x[1]) assert_equal(xflat[-1], x[-1, -1]) i = 0 j = 0 for xf in xflat: assert_equal(xf, x[j, i]) i += 1 if i >= x.shape[-1]: i = 0 j += 1 # test that matrices keep the correct shape (#4615) a = masked_array(np.matrix(np.eye(2)), mask=0) b = a.flat b01 = b[:2] assert_equal(b01.data, array([[1., 0.]])) assert_equal(b01.mask, array([[False, False]])) def test_assign_dtype(self): # check that the mask's dtype is updated when dtype is changed a = np.zeros(4, dtype='f4,i4') m = np.ma.array(a) m.dtype = np.dtype('f4') repr(m) # raises? assert_equal(m.dtype, np.dtype('f4')) # check that dtype changes that change shape of mask too much # are not allowed def assign(): m = np.ma.array(a) m.dtype = np.dtype('f8') assert_raises(ValueError, assign) b = a.view(dtype='f4', type=np.ma.MaskedArray) # raises? assert_equal(b.dtype, np.dtype('f4')) # check that nomask is preserved a = np.zeros(4, dtype='f4') m = np.ma.array(a) m.dtype = np.dtype('f4,i4') assert_equal(m.dtype, np.dtype('f4,i4')) assert_equal(m._mask, np.ma.nomask) class TestFillingValues(TestCase): def test_check_on_scalar(self): # Test _check_fill_value set to valid and invalid values _check_fill_value = np.ma.core._check_fill_value fval = _check_fill_value(0, int) assert_equal(fval, 0) fval = _check_fill_value(None, int) assert_equal(fval, default_fill_value(0)) fval = _check_fill_value(0, "|S3") assert_equal(fval, b"0") fval = _check_fill_value(None, "|S3") assert_equal(fval, default_fill_value(b"camelot!")) self.assertRaises(TypeError, _check_fill_value, 1e+20, int) self.assertRaises(TypeError, _check_fill_value, 'stuff', int) def test_check_on_fields(self): # Tests _check_fill_value with records _check_fill_value = np.ma.core._check_fill_value ndtype = [('a', int), ('b', float), ('c', "|S3")] # A check on a list should return a single record fval = _check_fill_value([-999, -12345678.9, "???"], ndtype) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) # A check on None should output the defaults fval = _check_fill_value(None, ndtype) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), [default_fill_value(0), default_fill_value(0.), asbytes(default_fill_value("0"))]) #.....Using a structured type as fill_value should work fill_val = np.array((-999, -12345678.9, "???"), dtype=ndtype) fval = _check_fill_value(fill_val, ndtype) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) #.....Using a flexible type w/ a different type shouldn't matter # BEHAVIOR in 1.5 and earlier: match structured types by position #fill_val = np.array((-999, -12345678.9, "???"), # dtype=[("A", int), ("B", float), ("C", "|S3")]) # BEHAVIOR in 1.6 and later: match structured types by name fill_val = np.array(("???", -999, -12345678.9), dtype=[("c", "|S3"), ("a", int), ("b", float), ]) # suppress deprecation warning in 1.12 (remove in 1.13) with assert_warns(FutureWarning): fval = _check_fill_value(fill_val, ndtype) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) #.....Using an object-array shouldn't matter either fill_val = np.ndarray(shape=(1,), dtype=object) fill_val[0] = (-999, -12345678.9, b"???") fval = _check_fill_value(fill_val, object) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), [-999, -12345678.9, b"???"]) # NOTE: This test was never run properly as "fill_value" rather than # "fill_val" was assigned. Written properly, it fails. #fill_val = np.array((-999, -12345678.9, "???")) #fval = _check_fill_value(fill_val, ndtype) #self.assertTrue(isinstance(fval, ndarray)) #assert_equal(fval.item(), [-999, -12345678.9, b"???"]) #.....One-field-only flexible type should work as well ndtype = [("a", int)] fval = _check_fill_value(-999999999, ndtype) self.assertTrue(isinstance(fval, ndarray)) assert_equal(fval.item(), (-999999999,)) def test_fillvalue_conversion(self): # Tests the behavior of fill_value during conversion # We had a tailored comment to make sure special attributes are # properly dealt with a = array([b'3', b'4', b'5']) a._optinfo.update({'comment':"updated!"}) b = array(a, dtype=int) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0)) b = array(a, dtype=float) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0.)) b = a.astype(int) assert_equal(b._data, [3, 4, 5]) assert_equal(b.fill_value, default_fill_value(0)) assert_equal(b._optinfo['comment'], "updated!") b = a.astype([('a', '|S3')]) assert_equal(b['a']._data, a._data) assert_equal(b['a'].fill_value, a.fill_value) def test_fillvalue(self): # Yet more fun with the fill_value data = masked_array([1, 2, 3], fill_value=-999) series = data[[0, 2, 1]] assert_equal(series._fill_value, data._fill_value) mtype = [('f', float), ('s', '|S3')] x = array([(1, 'a'), (2, 'b'), (pi, 'pi')], dtype=mtype) x.fill_value = 999 assert_equal(x.fill_value.item(), [999., b'999']) assert_equal(x['f'].fill_value, 999) assert_equal(x['s'].fill_value, b'999') x.fill_value = (9, '???') assert_equal(x.fill_value.item(), (9, b'???')) assert_equal(x['f'].fill_value, 9) assert_equal(x['s'].fill_value, b'???') x = array([1, 2, 3.1]) x.fill_value = 999 assert_equal(np.asarray(x.fill_value).dtype, float) assert_equal(x.fill_value, 999.) assert_equal(x._fill_value, np.array(999.)) def test_fillvalue_exotic_dtype(self): # Tests yet more exotic flexible dtypes _check_fill_value = np.ma.core._check_fill_value ndtype = [('i', int), ('s', '|S8'), ('f', float)] control = np.array((default_fill_value(0), default_fill_value('0'), default_fill_value(0.),), dtype=ndtype) assert_equal(_check_fill_value(None, ndtype), control) # The shape shouldn't matter ndtype = [('f0', float, (2, 2))] control = np.array((default_fill_value(0.),), dtype=[('f0', float)]).astype(ndtype) assert_equal(_check_fill_value(None, ndtype), control) control = np.array((0,), dtype=[('f0', float)]).astype(ndtype) assert_equal(_check_fill_value(0, ndtype), control) ndtype = np.dtype("int, (2,3)float, float") control = np.array((default_fill_value(0), default_fill_value(0.), default_fill_value(0.),), dtype="int, float, float").astype(ndtype) test = _check_fill_value(None, ndtype) assert_equal(test, control) control = np.array((0, 0, 0), dtype="int, float, float").astype(ndtype) assert_equal(_check_fill_value(0, ndtype), control) # but when indexing, fill value should become scalar not tuple # See issue #6723 M = masked_array(control) assert_equal(M["f1"].fill_value.ndim, 0) def test_fillvalue_datetime_timedelta(self): # Test default fillvalue for datetime64 and timedelta64 types. # See issue #4476, this would return '?' which would cause errors # elsewhere for timecode in ("as", "fs", "ps", "ns", "us", "ms", "s", "m", "h", "D", "W", "M", "Y"): control = numpy.datetime64("NaT", timecode) test = default_fill_value(numpy.dtype("<M8[" + timecode + "]")) np.testing.utils.assert_equal(test, control) control = numpy.timedelta64("NaT", timecode) test = default_fill_value(numpy.dtype("<m8[" + timecode + "]")) np.testing.utils.assert_equal(test, control) def test_extremum_fill_value(self): # Tests extremum fill values for flexible type. a = array([(1, (2, 3)), (4, (5, 6))], dtype=[('A', int), ('B', [('BA', int), ('BB', int)])]) test = a.fill_value assert_equal(test['A'], default_fill_value(a['A'])) assert_equal(test['B']['BA'], default_fill_value(a['B']['BA'])) assert_equal(test['B']['BB'], default_fill_value(a['B']['BB'])) test = minimum_fill_value(a) assert_equal(test[0], minimum_fill_value(a['A'])) assert_equal(test[1][0], minimum_fill_value(a['B']['BA'])) assert_equal(test[1][1], minimum_fill_value(a['B']['BB'])) assert_equal(test[1], minimum_fill_value(a['B'])) test = maximum_fill_value(a) assert_equal(test[0], maximum_fill_value(a['A'])) assert_equal(test[1][0], maximum_fill_value(a['B']['BA'])) assert_equal(test[1][1], maximum_fill_value(a['B']['BB'])) assert_equal(test[1], maximum_fill_value(a['B'])) def test_fillvalue_individual_fields(self): # Test setting fill_value on individual fields ndtype = [('a', int), ('b', int)] # Explicit fill_value a = array(list(zip([1, 2, 3], [4, 5, 6])), fill_value=(-999, -999), dtype=ndtype) aa = a['a'] aa.set_fill_value(10) assert_equal(aa._fill_value, np.array(10)) assert_equal(tuple(a.fill_value), (10, -999)) a.fill_value['b'] = -10 assert_equal(tuple(a.fill_value), (10, -10)) # Implicit fill_value t = array(list(zip([1, 2, 3], [4, 5, 6])), dtype=ndtype) tt = t['a'] tt.set_fill_value(10) assert_equal(tt._fill_value, np.array(10)) assert_equal(tuple(t.fill_value), (10, default_fill_value(0))) def test_fillvalue_implicit_structured_array(self): # Check that fill_value is always defined for structured arrays ndtype = ('b', float) adtype = ('a', float) a = array([(1.,), (2.,)], mask=[(False,), (False,)], fill_value=(np.nan,), dtype=np.dtype([adtype])) b = empty(a.shape, dtype=[adtype, ndtype]) b['a'] = a['a'] b['a'].set_fill_value(a['a'].fill_value) f = b._fill_value[()] assert_(np.isnan(f[0])) assert_equal(f[-1], default_fill_value(1.)) def test_fillvalue_as_arguments(self): # Test adding a fill_value parameter to empty/ones/zeros a = empty(3, fill_value=999.) assert_equal(a.fill_value, 999.) a = ones(3, fill_value=999., dtype=float) assert_equal(a.fill_value, 999.) a = zeros(3, fill_value=0., dtype=complex) assert_equal(a.fill_value, 0.) a = identity(3, fill_value=0., dtype=complex) assert_equal(a.fill_value, 0.) def test_shape_argument(self): # Test that shape can be provides as an argument # GH issue 6106 a = empty(shape=(3, )) assert_equal(a.shape, (3, )) a = ones(shape=(3, ), dtype=float) assert_equal(a.shape, (3, )) a = zeros(shape=(3, ), dtype=complex) assert_equal(a.shape, (3, )) def test_fillvalue_in_view(self): # Test the behavior of fill_value in view # Create initial masked array x = array([1, 2, 3], fill_value=1, dtype=np.int64) # Check that fill_value is preserved by default y = x.view() assert_(y.fill_value == 1) # Check that fill_value is preserved if dtype is specified and the # dtype is an ndarray sub-class and has a _fill_value attribute y = x.view(MaskedArray) assert_(y.fill_value == 1) # Check that fill_value is preserved if type is specified and the # dtype is an ndarray sub-class and has a _fill_value attribute (by # default, the first argument is dtype, not type) y = x.view(type=MaskedArray) assert_(y.fill_value == 1) # Check that code does not crash if passed an ndarray sub-class that # does not have a _fill_value attribute y = x.view(np.ndarray) y = x.view(type=np.ndarray) # Check that fill_value can be overridden with view y = x.view(MaskedArray, fill_value=2) assert_(y.fill_value == 2) # Check that fill_value can be overridden with view (using type=) y = x.view(type=MaskedArray, fill_value=2) assert_(y.fill_value == 2) # Check that fill_value gets reset if passed a dtype but not a # fill_value. This is because even though in some cases one can safely # cast the fill_value, e.g. if taking an int64 view of an int32 array, # in other cases, this cannot be done (e.g. int32 view of an int64 # array with a large fill_value). y = x.view(dtype=np.int32) assert_(y.fill_value == 999999) def test_fillvalue_bytes_or_str(self): # Test whether fill values work as expected for structured dtypes # containing bytes or str. See issue #7259. a = empty(shape=(3, ), dtype="(2)3S,(2)3U") assert_equal(a["f0"].fill_value, default_fill_value(b"spam")) assert_equal(a["f1"].fill_value, default_fill_value("eggs")) class TestUfuncs(TestCase): # Test class for the application of ufuncs on MaskedArrays. def setUp(self): # Base data definition. self.d = (array([1.0, 0, -1, pi / 2] * 2, mask=[0, 1] + [0] * 6), array([1.0, 0, -1, pi / 2] * 2, mask=[1, 0] + [0] * 6),) self.err_status = np.geterr() np.seterr(divide='ignore', invalid='ignore') def tearDown(self): np.seterr(**self.err_status) def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f) def test_reduce(self): # Tests reduce on MaskedArrays. a = self.d[0] self.assertTrue(not alltrue(a, axis=0)) self.assertTrue(sometrue(a, axis=0)) assert_equal(sum(a[:3], axis=0), 0) assert_equal(product(a, axis=0), 0) assert_equal(add.reduce(a), pi) def test_minmax(self): # Tests extrema on MaskedArrays. a = arange(1, 13).reshape(3, 4) amask = masked_where(a < 5, a) assert_equal(amask.max(), a.max()) assert_equal(amask.min(), 5) assert_equal(amask.max(0), a.max(0)) assert_equal(amask.min(0), [5, 6, 7, 8]) self.assertTrue(amask.max(1)[0].mask) self.assertTrue(amask.min(1)[0].mask) def test_ndarray_mask(self): # Check that the mask of the result is a ndarray (not a MaskedArray...) a = masked_array([-1, 0, 1, 2, 3], mask=[0, 0, 0, 0, 1]) test = np.sqrt(a) control = masked_array([-1, 0, 1, np.sqrt(2), -1], mask=[1, 0, 0, 0, 1]) assert_equal(test, control) assert_equal(test.mask, control.mask) self.assertTrue(not isinstance(test.mask, MaskedArray)) def test_treatment_of_NotImplemented(self): # Check that NotImplemented is returned at appropriate places a = masked_array([1., 2.], mask=[1, 0]) self.assertRaises(TypeError, operator.mul, a, "abc") self.assertRaises(TypeError, operator.truediv, a, "abc") class MyClass(object): __array_priority__ = a.__array_priority__ + 1 def __mul__(self, other): return "My mul" def __rmul__(self, other): return "My rmul" me = MyClass() assert_(me * a == "My mul") assert_(a * me == "My rmul") # and that __array_priority__ is respected class MyClass2(object): __array_priority__ = 100 def __mul__(self, other): return "Me2mul" def __rmul__(self, other): return "Me2rmul" def __rdiv__(self, other): return "Me2rdiv" __rtruediv__ = __rdiv__ me_too = MyClass2() assert_(a.__mul__(me_too) is NotImplemented) assert_(all(multiply.outer(a, me_too) == "Me2rmul")) assert_(a.__truediv__(me_too) is NotImplemented) assert_(me_too * a == "Me2mul") assert_(a * me_too == "Me2rmul") assert_(a / me_too == "Me2rdiv") def test_no_masked_nan_warnings(self): # check that a nan in masked position does not # cause ufunc warnings m = np.ma.array([0.5, np.nan], mask=[0,1]) with warnings.catch_warnings(): warnings.filterwarnings("error") # test unary and binary ufuncs exp(m) add(m, 1) m > 0 # test different unary domains sqrt(m) log(m) tan(m) arcsin(m) arccos(m) arccosh(m) # test binary domains divide(m, 2) # also check that allclose uses ma ufuncs, to avoid warning allclose(m, 0.5) class TestMaskedArrayInPlaceArithmetics(TestCase): # Test MaskedArray Arithmetics def setUp(self): x = arange(10) y = arange(10) xm = arange(10) xm[2] = masked self.intdata = (x, y, xm) self.floatdata = (x.astype(float), y.astype(float), xm.astype(float)) self.othertypes = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] self.othertypes = [np.dtype(_).type for _ in self.othertypes] self.uint8data = ( x.astype(np.uint8), y.astype(np.uint8), xm.astype(np.uint8) ) def test_inplace_addition_scalar(self): # Test of inplace additions (x, y, xm) = self.intdata xm[2] = masked x += 1 assert_equal(x, y + 1) xm += 1 assert_equal(xm, y + 1) (x, _, xm) = self.floatdata id1 = x.data.ctypes._data x += 1. assert_(id1 == x.data.ctypes._data) assert_equal(x, y + 1.) def test_inplace_addition_array(self): # Test of inplace additions (x, y, xm) = self.intdata m = xm.mask a = arange(10, dtype=np.int16) a[-1] = masked x += a xm += a assert_equal(x, y + a) assert_equal(xm, y + a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_subtraction_scalar(self): # Test of inplace subtractions (x, y, xm) = self.intdata x -= 1 assert_equal(x, y - 1) xm -= 1 assert_equal(xm, y - 1) def test_inplace_subtraction_array(self): # Test of inplace subtractions (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x -= a xm -= a assert_equal(x, y - a) assert_equal(xm, y - a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_multiplication_scalar(self): # Test of inplace multiplication (x, y, xm) = self.floatdata x *= 2.0 assert_equal(x, y * 2) xm *= 2.0 assert_equal(xm, y * 2) def test_inplace_multiplication_array(self): # Test of inplace multiplication (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x *= a xm *= a assert_equal(x, y * a) assert_equal(xm, y * a) assert_equal(xm.mask, mask_or(m, a.mask)) def test_inplace_division_scalar_int(self): # Test of inplace division (x, y, xm) = self.intdata x = arange(10) * 2 xm = arange(10) * 2 xm[2] = masked x //= 2 assert_equal(x, y) xm //= 2 assert_equal(xm, y) def test_inplace_division_scalar_float(self): # Test of inplace division (x, y, xm) = self.floatdata x /= 2.0 assert_equal(x, y / 2.0) xm /= arange(10) assert_equal(xm, ones((10,))) def test_inplace_division_array_float(self): # Test of inplace division (x, y, xm) = self.floatdata m = xm.mask a = arange(10, dtype=float) a[-1] = masked x /= a xm /= a assert_equal(x, y / a) assert_equal(xm, y / a) assert_equal(xm.mask, mask_or(mask_or(m, a.mask), (a == 0))) def test_inplace_division_misc(self): x = [1., 1., 1., -2., pi / 2., 4., 5., -10., 10., 1., 2., 3.] y = [5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.] m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) z = xm / ym assert_equal(z._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]) assert_equal(z._data, [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.]) xm = xm.copy() xm /= ym assert_equal(xm._mask, [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1]) assert_equal(z._data, [1., 1., 1., -1., -pi / 2., 4., 5., 1., 1., 1., 2., 3.]) def test_datafriendly_add(self): # Test keeping data w/ (inplace) addition x = array([1, 2, 3], mask=[0, 0, 1]) # Test add w/ scalar xx = x + 1 assert_equal(xx.data, [2, 3, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test iadd w/ scalar x += 1 assert_equal(x.data, [2, 3, 3]) assert_equal(x.mask, [0, 0, 1]) # Test add w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x + array([1, 2, 3], mask=[1, 0, 0]) assert_equal(xx.data, [1, 4, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test iadd w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x += array([1, 2, 3], mask=[1, 0, 0]) assert_equal(x.data, [1, 4, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_sub(self): # Test keeping data w/ (inplace) subtraction # Test sub w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x - 1 assert_equal(xx.data, [0, 1, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test isub w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) x -= 1 assert_equal(x.data, [0, 1, 3]) assert_equal(x.mask, [0, 0, 1]) # Test sub w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x - array([1, 2, 3], mask=[1, 0, 0]) assert_equal(xx.data, [1, 0, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test isub w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x -= array([1, 2, 3], mask=[1, 0, 0]) assert_equal(x.data, [1, 0, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_mul(self): # Test keeping data w/ (inplace) multiplication # Test mul w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x * 2 assert_equal(xx.data, [2, 4, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test imul w/ scalar x = array([1, 2, 3], mask=[0, 0, 1]) x *= 2 assert_equal(x.data, [2, 4, 3]) assert_equal(x.mask, [0, 0, 1]) # Test mul w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x * array([10, 20, 30], mask=[1, 0, 0]) assert_equal(xx.data, [1, 40, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test imul w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x *= array([10, 20, 30], mask=[1, 0, 0]) assert_equal(x.data, [1, 40, 3]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_div(self): # Test keeping data w/ (inplace) division # Test div on scalar x = array([1, 2, 3], mask=[0, 0, 1]) xx = x / 2. assert_equal(xx.data, [1 / 2., 2 / 2., 3]) assert_equal(xx.mask, [0, 0, 1]) # Test idiv on scalar x = array([1., 2., 3.], mask=[0, 0, 1]) x /= 2. assert_equal(x.data, [1 / 2., 2 / 2., 3]) assert_equal(x.mask, [0, 0, 1]) # Test div on array x = array([1., 2., 3.], mask=[0, 0, 1]) xx = x / array([10., 20., 30.], mask=[1, 0, 0]) assert_equal(xx.data, [1., 2. / 20., 3.]) assert_equal(xx.mask, [1, 0, 1]) # Test idiv on array x = array([1., 2., 3.], mask=[0, 0, 1]) x /= array([10., 20., 30.], mask=[1, 0, 0]) assert_equal(x.data, [1., 2 / 20., 3.]) assert_equal(x.mask, [1, 0, 1]) def test_datafriendly_pow(self): # Test keeping data w/ (inplace) power # Test pow on scalar x = array([1., 2., 3.], mask=[0, 0, 1]) xx = x ** 2.5 assert_equal(xx.data, [1., 2. ** 2.5, 3.]) assert_equal(xx.mask, [0, 0, 1]) # Test ipow on scalar x **= 2.5 assert_equal(x.data, [1., 2. ** 2.5, 3]) assert_equal(x.mask, [0, 0, 1]) def test_datafriendly_add_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a += b assert_equal(a, [[2, 2], [4, 4]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a += b assert_equal(a, [[2, 2], [4, 4]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_datafriendly_sub_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a -= b assert_equal(a, [[0, 0], [2, 2]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a -= b assert_equal(a, [[0, 0], [2, 2]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_datafriendly_mul_arrays(self): a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 0]) a *= b assert_equal(a, [[1, 1], [3, 3]]) if a.mask is not nomask: assert_equal(a.mask, [[0, 0], [0, 0]]) a = array([[1, 1], [3, 3]]) b = array([1, 1], mask=[0, 1]) a *= b assert_equal(a, [[1, 1], [3, 3]]) assert_equal(a.mask, [[0, 1], [0, 1]]) def test_inplace_addition_scalar_type(self): # Test of inplace additions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) xm[2] = masked x += t(1) assert_equal(x, y + t(1)) xm += t(1) assert_equal(xm, y + t(1)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_addition_array_type(self): # Test of inplace additions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x += a xm += a assert_equal(x, y + a) assert_equal(xm, y + a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_subtraction_scalar_type(self): # Test of inplace subtractions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x -= t(1) assert_equal(x, y - t(1)) xm -= t(1) assert_equal(xm, y - t(1)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_subtraction_array_type(self): # Test of inplace subtractions for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x -= a xm -= a assert_equal(x, y - a) assert_equal(xm, y - a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_multiplication_scalar_type(self): # Test of inplace multiplication for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x *= t(2) assert_equal(x, y * t(2)) xm *= t(2) assert_equal(xm, y * t(2)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_multiplication_array_type(self): # Test of inplace multiplication for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x *= a xm *= a assert_equal(x, y * a) assert_equal(xm, y * a) assert_equal(xm.mask, mask_or(m, a.mask)) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_floor_division_scalar_type(self): # Test of inplace division for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) x = arange(10, dtype=t) * t(2) xm = arange(10, dtype=t) * t(2) xm[2] = masked x //= t(2) xm //= t(2) assert_equal(x, y) assert_equal(xm, y) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_floor_division_array_type(self): # Test of inplace division for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked x //= a xm //= a assert_equal(x, y // a) assert_equal(xm, y // a) assert_equal( xm.mask, mask_or(mask_or(m, a.mask), (a == t(0))) ) assert_equal(len(w), 0, "Failed on type=%s." % t) def test_inplace_division_scalar_type(self): # Test of inplace division for t in self.othertypes: with suppress_warnings() as sup: sup.record(UserWarning) (x, y, xm) = (_.astype(t) for _ in self.uint8data) x = arange(10, dtype=t) * t(2) xm = arange(10, dtype=t) * t(2) xm[2] = masked # May get a DeprecationWarning or a TypeError. # # This is a consequence of the fact that this is true divide # and will require casting to float for calculation and # casting back to the original type. This will only be raised # with integers. Whether it is an error or warning is only # dependent on how stringent the casting rules are. # # Will handle the same way. try: x /= t(2) assert_equal(x, y) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) try: xm /= t(2) assert_equal(xm, y) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) if issubclass(t, np.integer): assert_equal(len(sup.log), 2, "Failed on type=%s." % t) else: assert_equal(len(sup.log), 0, "Failed on type=%s." % t) def test_inplace_division_array_type(self): # Test of inplace division for t in self.othertypes: with suppress_warnings() as sup: sup.record(UserWarning) (x, y, xm) = (_.astype(t) for _ in self.uint8data) m = xm.mask a = arange(10, dtype=t) a[-1] = masked # May get a DeprecationWarning or a TypeError. # # This is a consequence of the fact that this is true divide # and will require casting to float for calculation and # casting back to the original type. This will only be raised # with integers. Whether it is an error or warning is only # dependent on how stringent the casting rules are. # # Will handle the same way. try: x /= a assert_equal(x, y / a) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) try: xm /= a assert_equal(xm, y / a) assert_equal( xm.mask, mask_or(mask_or(m, a.mask), (a == t(0))) ) except (DeprecationWarning, TypeError) as e: warnings.warn(str(e), stacklevel=1) if issubclass(t, np.integer): assert_equal(len(sup.log), 2, "Failed on type=%s." % t) else: assert_equal(len(sup.log), 0, "Failed on type=%s." % t) def test_inplace_pow_type(self): # Test keeping data w/ (inplace) power for t in self.othertypes: with warnings.catch_warnings(record=True) as w: warnings.filterwarnings("always") # Test pow on scalar x = array([1, 2, 3], mask=[0, 0, 1], dtype=t) xx = x ** t(2) xx_r = array([1, 2 ** 2, 3], mask=[0, 0, 1], dtype=t) assert_equal(xx.data, xx_r.data) assert_equal(xx.mask, xx_r.mask) # Test ipow on scalar x **= t(2) assert_equal(x.data, xx_r.data) assert_equal(x.mask, xx_r.mask) assert_equal(len(w), 0, "Failed on type=%s." % t) class TestMaskedArrayMethods(TestCase): # Test class for miscellaneous MaskedArrays methods. def setUp(self): # Base data definition. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_generic_methods(self): # Tests some MaskedArray methods. a = array([1, 3, 2]) assert_equal(a.any(), a._data.any()) assert_equal(a.all(), a._data.all()) assert_equal(a.argmax(), a._data.argmax()) assert_equal(a.argmin(), a._data.argmin()) assert_equal(a.choose(0, 1, 2, 3, 4), a._data.choose(0, 1, 2, 3, 4)) assert_equal(a.compress([1, 0, 1]), a._data.compress([1, 0, 1])) assert_equal(a.conj(), a._data.conj()) assert_equal(a.conjugate(), a._data.conjugate()) m = array([[1, 2], [3, 4]]) assert_equal(m.diagonal(), m._data.diagonal()) assert_equal(a.sum(), a._data.sum()) assert_equal(a.take([1, 2]), a._data.take([1, 2])) assert_equal(m.transpose(), m._data.transpose()) def test_allclose(self): # Tests allclose on arrays a = np.random.rand(10) b = a + np.random.rand(10) * 1e-8 self.assertTrue(allclose(a, b)) # Test allclose w/ infs a[0] = np.inf self.assertTrue(not allclose(a, b)) b[0] = np.inf self.assertTrue(allclose(a, b)) # Test allclose w/ masked a = masked_array(a) a[-1] = masked self.assertTrue(allclose(a, b, masked_equal=True)) self.assertTrue(not allclose(a, b, masked_equal=False)) # Test comparison w/ scalar a *= 1e-8 a[0] = 0 self.assertTrue(allclose(a, 0, masked_equal=True)) # Test that the function works for MIN_INT integer typed arrays a = masked_array([np.iinfo(np.int_).min], dtype=np.int_) self.assertTrue(allclose(a, a)) def test_allany(self): # Checks the any/all methods/functions. x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) m = np.array([[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mx = masked_array(x, mask=m) mxbig = (mx > 0.5) mxsmall = (mx < 0.5) self.assertFalse(mxbig.all()) self.assertTrue(mxbig.any()) assert_equal(mxbig.all(0), [False, False, True]) assert_equal(mxbig.all(1), [False, False, True]) assert_equal(mxbig.any(0), [False, False, True]) assert_equal(mxbig.any(1), [True, True, True]) self.assertFalse(mxsmall.all()) self.assertTrue(mxsmall.any()) assert_equal(mxsmall.all(0), [True, True, False]) assert_equal(mxsmall.all(1), [False, False, False]) assert_equal(mxsmall.any(0), [True, True, False]) assert_equal(mxsmall.any(1), [True, True, False]) def test_allany_onmatrices(self): x = np.array([[0.13, 0.26, 0.90], [0.28, 0.33, 0.63], [0.31, 0.87, 0.70]]) X = np.matrix(x) m = np.array([[True, False, False], [False, False, False], [True, True, False]], dtype=np.bool_) mX = masked_array(X, mask=m) mXbig = (mX > 0.5) mXsmall = (mX < 0.5) self.assertFalse(mXbig.all()) self.assertTrue(mXbig.any()) assert_equal(mXbig.all(0), np.matrix([False, False, True])) assert_equal(mXbig.all(1), np.matrix([False, False, True]).T) assert_equal(mXbig.any(0), np.matrix([False, False, True])) assert_equal(mXbig.any(1), np.matrix([True, True, True]).T) self.assertFalse(mXsmall.all()) self.assertTrue(mXsmall.any()) assert_equal(mXsmall.all(0), np.matrix([True, True, False])) assert_equal(mXsmall.all(1), np.matrix([False, False, False]).T) assert_equal(mXsmall.any(0), np.matrix([True, True, False])) assert_equal(mXsmall.any(1), np.matrix([True, True, False]).T) def test_allany_oddities(self): # Some fun with all and any store = empty((), dtype=bool) full = array([1, 2, 3], mask=True) self.assertTrue(full.all() is masked) full.all(out=store) self.assertTrue(store) self.assertTrue(store._mask, True) self.assertTrue(store is not masked) store = empty((), dtype=bool) self.assertTrue(full.any() is masked) full.any(out=store) self.assertTrue(not store) self.assertTrue(store._mask, True) self.assertTrue(store is not masked) def test_argmax_argmin(self): # Tests argmin & argmax on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_equal(mx.argmin(), 35) assert_equal(mX.argmin(), 35) assert_equal(m2x.argmin(), 4) assert_equal(m2X.argmin(), 4) assert_equal(mx.argmax(), 28) assert_equal(mX.argmax(), 28) assert_equal(m2x.argmax(), 31) assert_equal(m2X.argmax(), 31) assert_equal(mX.argmin(0), [2, 2, 2, 5, 0, 5]) assert_equal(m2X.argmin(0), [2, 2, 4, 5, 0, 4]) assert_equal(mX.argmax(0), [0, 5, 0, 5, 4, 0]) assert_equal(m2X.argmax(0), [5, 5, 0, 5, 1, 0]) assert_equal(mX.argmin(1), [4, 1, 0, 0, 5, 5, ]) assert_equal(m2X.argmin(1), [4, 4, 0, 0, 5, 3]) assert_equal(mX.argmax(1), [2, 4, 1, 1, 4, 1]) assert_equal(m2X.argmax(1), [2, 4, 1, 1, 1, 1]) def test_clip(self): # Tests clip on MaskedArrays. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(x, mask=m) clipped = mx.clip(2, 8) assert_equal(clipped.mask, mx.mask) assert_equal(clipped._data, x.clip(2, 8)) assert_equal(clipped._data, mx._data.clip(2, 8)) def test_compress(self): # test compress a = masked_array([1., 2., 3., 4., 5.], fill_value=9999) condition = (a > 1.5) & (a < 3.5) assert_equal(a.compress(condition), [2., 3.]) a[[2, 3]] = masked b = a.compress(condition) assert_equal(b._data, [2., 3.]) assert_equal(b._mask, [0, 1]) assert_equal(b.fill_value, 9999) assert_equal(b, a[condition]) condition = (a < 4.) b = a.compress(condition) assert_equal(b._data, [1., 2., 3.]) assert_equal(b._mask, [0, 0, 1]) assert_equal(b.fill_value, 9999) assert_equal(b, a[condition]) a = masked_array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0]]) b = a.compress(a.ravel() >= 22) assert_equal(b._data, [30, 40, 50, 60]) assert_equal(b._mask, [1, 1, 0, 0]) x = np.array([3, 1, 2]) b = a.compress(x >= 2, axis=1) assert_equal(b._data, [[10, 30], [40, 60]]) assert_equal(b._mask, [[0, 1], [1, 0]]) def test_compressed(self): # Tests compressed a = array([1, 2, 3, 4], mask=[0, 0, 0, 0]) b = a.compressed() assert_equal(b, a) a[0] = masked b = a.compressed() assert_equal(b, [2, 3, 4]) a = array(np.matrix([1, 2, 3, 4]), mask=[0, 0, 0, 0]) b = a.compressed() assert_equal(b, a) self.assertTrue(isinstance(b, np.matrix)) a[0, 0] = masked b = a.compressed() assert_equal(b, [[2, 3, 4]]) def test_empty(self): # Tests empty/like datatype = [('a', int), ('b', float), ('c', '|S8')] a = masked_array([(1, 1.1, '1.1'), (2, 2.2, '2.2'), (3, 3.3, '3.3')], dtype=datatype) assert_equal(len(a.fill_value.item()), len(datatype)) b = empty_like(a) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) b = empty(len(a), dtype=datatype) assert_equal(b.shape, a.shape) assert_equal(b.fill_value, a.fill_value) # check empty_like mask handling a = masked_array([1, 2, 3], mask=[False, True, False]) b = empty_like(a) assert_(not np.may_share_memory(a.mask, b.mask)) b = a.view(masked_array) assert_(np.may_share_memory(a.mask, b.mask)) @suppress_copy_mask_on_assignment def test_put(self): # Tests put. d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) x = array(d, mask=m) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is masked) x[[1, 4]] = [10, 40] self.assertTrue(x[3] is masked) self.assertTrue(x[4] is not masked) assert_equal(x, [0, 10, 2, -1, 40]) x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2) i = [0, 2, 4, 6] x.put(i, [6, 4, 2, 0]) assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ])) assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]) x.put(i, masked_array([0, 2, 4, 6], [1, 0, 1, 0])) assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ]) assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]) x = masked_array(arange(10), mask=[1, 0, 0, 0, 0] * 2) put(x, i, [6, 4, 2, 0]) assert_equal(x, asarray([6, 1, 4, 3, 2, 5, 0, 7, 8, 9, ])) assert_equal(x.mask, [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]) put(x, i, masked_array([0, 2, 4, 6], [1, 0, 1, 0])) assert_array_equal(x, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ]) assert_equal(x.mask, [1, 0, 0, 0, 1, 1, 0, 0, 0, 0]) def test_put_nomask(self): # GitHub issue 6425 x = zeros(10) z = array([3., -1.], mask=[False, True]) x.put([1, 2], z) self.assertTrue(x[0] is not masked) assert_equal(x[0], 0) self.assertTrue(x[1] is not masked) assert_equal(x[1], 3) self.assertTrue(x[2] is masked) self.assertTrue(x[3] is not masked) assert_equal(x[3], 0) def test_put_hardmask(self): # Tests put on hardmask d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) xh = array(d + 1, mask=m, hard_mask=True, copy=True) xh.put([4, 2, 0, 1, 3], [1, 2, 3, 4, 5]) assert_equal(xh._data, [3, 4, 2, 4, 5]) def test_putmask(self): x = arange(6) + 1 mx = array(x, mask=[0, 0, 0, 1, 1, 1]) mask = [0, 0, 1, 0, 0, 1] # w/o mask, w/o masked values xx = x.copy() putmask(xx, mask, 99) assert_equal(xx, [1, 2, 99, 4, 5, 99]) # w/ mask, w/o masked values mxx = mx.copy() putmask(mxx, mask, 99) assert_equal(mxx._data, [1, 2, 99, 4, 5, 99]) assert_equal(mxx._mask, [0, 0, 0, 1, 1, 0]) # w/o mask, w/ masked values values = array([10, 20, 30, 40, 50, 60], mask=[1, 1, 1, 0, 0, 0]) xx = x.copy() putmask(xx, mask, values) assert_equal(xx._data, [1, 2, 30, 4, 5, 60]) assert_equal(xx._mask, [0, 0, 1, 0, 0, 0]) # w/ mask, w/ masked values mxx = mx.copy() putmask(mxx, mask, values) assert_equal(mxx._data, [1, 2, 30, 4, 5, 60]) assert_equal(mxx._mask, [0, 0, 1, 1, 1, 0]) # w/ mask, w/ masked values + hardmask mxx = mx.copy() mxx.harden_mask() putmask(mxx, mask, values) assert_equal(mxx, [1, 2, 30, 4, 5, 60]) def test_ravel(self): # Tests ravel a = array([[1, 2, 3, 4, 5]], mask=[[0, 1, 0, 0, 0]]) aravel = a.ravel() assert_equal(aravel._mask.shape, aravel.shape) a = array([0, 0], mask=[1, 1]) aravel = a.ravel() assert_equal(aravel._mask.shape, a.shape) a = array(np.matrix([1, 2, 3, 4, 5]), mask=[[0, 1, 0, 0, 0]]) aravel = a.ravel() assert_equal(aravel.shape, (1, 5)) assert_equal(aravel._mask.shape, a.shape) # Checks that small_mask is preserved a = array([1, 2, 3, 4], mask=[0, 0, 0, 0], shrink=False) assert_equal(a.ravel()._mask, [0, 0, 0, 0]) # Test that the fill_value is preserved a.fill_value = -99 a.shape = (2, 2) ar = a.ravel() assert_equal(ar._mask, [0, 0, 0, 0]) assert_equal(ar._data, [1, 2, 3, 4]) assert_equal(ar.fill_value, -99) # Test index ordering assert_equal(a.ravel(order='C'), [1, 2, 3, 4]) assert_equal(a.ravel(order='F'), [1, 3, 2, 4]) def test_reshape(self): # Tests reshape x = arange(4) x[0] = masked y = x.reshape(2, 2) assert_equal(y.shape, (2, 2,)) assert_equal(y._mask.shape, (2, 2,)) assert_equal(x.shape, (4,)) assert_equal(x._mask.shape, (4,)) def test_sort(self): # Test sort x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) sortedx = sort(x) assert_equal(sortedx._data, [1, 2, 3, 4]) assert_equal(sortedx._mask, [0, 0, 0, 1]) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [4, 1, 2, 3]) assert_equal(sortedx._mask, [1, 0, 0, 0]) x.sort() assert_equal(x._data, [1, 2, 3, 4]) assert_equal(x._mask, [0, 0, 0, 1]) x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) x.sort(endwith=False) assert_equal(x._data, [4, 1, 2, 3]) assert_equal(x._mask, [1, 0, 0, 0]) x = [1, 4, 2, 3] sortedx = sort(x) self.assertTrue(not isinstance(sorted, MaskedArray)) x = array([0, 1, -1, -2, 2], mask=nomask, dtype=np.int8) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [-2, -1, 0, 1, 2]) x = array([0, 1, -1, -2, 2], mask=[0, 1, 0, 0, 1], dtype=np.int8) sortedx = sort(x, endwith=False) assert_equal(sortedx._data, [1, 2, -2, -1, 0]) assert_equal(sortedx._mask, [1, 1, 0, 0, 0]) def test_argsort_matches_sort(self): x = array([1, 4, 2, 3], mask=[0, 1, 0, 0], dtype=np.uint8) for kwargs in [dict(), dict(endwith=True), dict(endwith=False), dict(fill_value=2), dict(fill_value=2, endwith=True), dict(fill_value=2, endwith=False)]: sortedx = sort(x, **kwargs) argsortedx = x[argsort(x, **kwargs)] assert_equal(sortedx._data, argsortedx._data) assert_equal(sortedx._mask, argsortedx._mask) def test_sort_2d(self): # Check sort of 2D array. # 2D array w/o mask a = masked_array([[8, 4, 1], [2, 0, 9]]) a.sort(0) assert_equal(a, [[2, 0, 1], [8, 4, 9]]) a = masked_array([[8, 4, 1], [2, 0, 9]]) a.sort(1) assert_equal(a, [[1, 4, 8], [0, 2, 9]]) # 2D array w/mask a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]]) a.sort(0) assert_equal(a, [[2, 0, 1], [8, 4, 9]]) assert_equal(a._mask, [[0, 0, 0], [1, 0, 1]]) a = masked_array([[8, 4, 1], [2, 0, 9]], mask=[[1, 0, 0], [0, 0, 1]]) a.sort(1) assert_equal(a, [[1, 4, 8], [0, 2, 9]]) assert_equal(a._mask, [[0, 0, 1], [0, 0, 1]]) # 3D a = masked_array([[[7, 8, 9], [4, 5, 6], [1, 2, 3]], [[1, 2, 3], [7, 8, 9], [4, 5, 6]], [[7, 8, 9], [1, 2, 3], [4, 5, 6]], [[4, 5, 6], [1, 2, 3], [7, 8, 9]]]) a[a % 4 == 0] = masked am = a.copy() an = a.filled(99) am.sort(0) an.sort(0) assert_equal(am, an) am = a.copy() an = a.filled(99) am.sort(1) an.sort(1) assert_equal(am, an) am = a.copy() an = a.filled(99) am.sort(2) an.sort(2) assert_equal(am, an) def test_sort_flexible(self): # Test sort on flexible dtype. a = array( data=[(3, 3), (3, 2), (2, 2), (2, 1), (1, 0), (1, 1), (1, 2)], mask=[(0, 0), (0, 1), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0)], dtype=[('A', int), ('B', int)]) test = sort(a) b = array( data=[(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 2), (1, 0)], mask=[(0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (1, 0)], dtype=[('A', int), ('B', int)]) assert_equal(test, b) assert_equal(test.mask, b.mask) test = sort(a, endwith=False) b = array( data=[(1, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 3), ], mask=[(1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (0, 1), (0, 0), ], dtype=[('A', int), ('B', int)]) assert_equal(test, b) assert_equal(test.mask, b.mask) def test_argsort(self): # Test argsort a = array([1, 5, 2, 4, 3], mask=[1, 0, 0, 1, 0]) assert_equal(np.argsort(a), argsort(a)) def test_squeeze(self): # Check squeeze data = masked_array([[1, 2, 3]]) assert_equal(data.squeeze(), [1, 2, 3]) data = masked_array([[1, 2, 3]], mask=[[1, 1, 1]]) assert_equal(data.squeeze(), [1, 2, 3]) assert_equal(data.squeeze()._mask, [1, 1, 1]) data = masked_array([[1]], mask=True) self.assertTrue(data.squeeze() is masked) def test_swapaxes(self): # Tests swapaxes on MaskedArrays. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mX = array(x, mask=m).reshape(6, 6) mXX = mX.reshape(3, 2, 2, 3) mXswapped = mX.swapaxes(0, 1) assert_equal(mXswapped[-1], mX[:, -1]) mXXswapped = mXX.swapaxes(0, 2) assert_equal(mXXswapped.shape, (2, 2, 3, 3)) def test_take(self): # Tests take x = masked_array([10, 20, 30, 40], [0, 1, 0, 1]) assert_equal(x.take([0, 0, 3]), masked_array([10, 10, 40], [0, 0, 1])) assert_equal(x.take([0, 0, 3]), x[[0, 0, 3]]) assert_equal(x.take([[0, 1], [0, 1]]), masked_array([[10, 20], [10, 20]], [[0, 1], [0, 1]])) # assert_equal crashes when passed np.ma.mask self.assertIs(x[1], np.ma.masked) self.assertIs(x.take(1), np.ma.masked) x = array([[10, 20, 30], [40, 50, 60]], mask=[[0, 0, 1], [1, 0, 0, ]]) assert_equal(x.take([0, 2], axis=1), array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])) assert_equal(take(x, [0, 2], axis=1), array([[10, 30], [40, 60]], mask=[[0, 1], [1, 0]])) def test_take_masked_indices(self): # Test take w/ masked indices a = np.array((40, 18, 37, 9, 22)) indices = np.arange(3)[None,:] + np.arange(5)[:, None] mindices = array(indices, mask=(indices >= len(a))) # No mask test = take(a, mindices, mode='clip') ctrl = array([[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 22], [22, 22, 22]]) assert_equal(test, ctrl) # Masked indices test = take(a, mindices) ctrl = array([[40, 18, 37], [18, 37, 9], [37, 9, 22], [9, 22, 40], [22, 40, 40]]) ctrl[3, 2] = ctrl[4, 1] = ctrl[4, 2] = masked assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) # Masked input + masked indices a = array((40, 18, 37, 9, 22), mask=(0, 1, 0, 0, 0)) test = take(a, mindices) ctrl[0, 1] = ctrl[1, 0] = masked assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) def test_tolist(self): # Tests to list # ... on 1D x = array(np.arange(12)) x[[1, -2]] = masked xlist = x.tolist() self.assertTrue(xlist[1] is None) self.assertTrue(xlist[-2] is None) # ... on 2D x.shape = (3, 4) xlist = x.tolist() ctrl = [[0, None, 2, 3], [4, 5, 6, 7], [8, 9, None, 11]] assert_equal(xlist[0], [0, None, 2, 3]) assert_equal(xlist[1], [4, 5, 6, 7]) assert_equal(xlist[2], [8, 9, None, 11]) assert_equal(xlist, ctrl) # ... on structured array w/ masked records x = array(list(zip([1, 2, 3], [1.1, 2.2, 3.3], ['one', 'two', 'thr'])), dtype=[('a', int), ('b', float), ('c', '|S8')]) x[-1] = masked assert_equal(x.tolist(), [(1, 1.1, b'one'), (2, 2.2, b'two'), (None, None, None)]) # ... on structured array w/ masked fields a = array([(1, 2,), (3, 4)], mask=[(0, 1), (0, 0)], dtype=[('a', int), ('b', int)]) test = a.tolist() assert_equal(test, [[1, None], [3, 4]]) # ... on mvoid a = a[0] test = a.tolist() assert_equal(test, [1, None]) def test_tolist_specialcase(self): # Test mvoid.tolist: make sure we return a standard Python object a = array([(0, 1), (2, 3)], dtype=[('a', int), ('b', int)]) # w/o mask: each entry is a np.void whose elements are standard Python for entry in a: for item in entry.tolist(): assert_(not isinstance(item, np.generic)) # w/ mask: each entry is a ma.void whose elements should be # standard Python a.mask[0] = (0, 1) for entry in a: for item in entry.tolist(): assert_(not isinstance(item, np.generic)) def test_toflex(self): # Test the conversion to records data = arange(10) record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) ndtype = [('i', int), ('s', '|S3'), ('f', float)] data = array([(i, s, f) for (i, s, f) in zip(np.arange(10), 'ABCDEFGHIJKLM', np.random.rand(10))], dtype=ndtype) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal(record['_data'], data._data) assert_equal(record['_mask'], data._mask) ndtype = np.dtype("int, (2,3)float, float") data = array([(i, f, ff) for (i, f, ff) in zip(np.arange(10), np.random.rand(10), np.random.rand(10))], dtype=ndtype) data[[0, 1, 2, -1]] = masked record = data.toflex() assert_equal_records(record['_data'], data._data) assert_equal_records(record['_mask'], data._mask) def test_fromflex(self): # Test the reconstruction of a masked_array from a record a = array([1, 2, 3]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.mask, a.mask) a = array([1, 2, 3], mask=[0, 0, 1]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.mask, a.mask) a = array([(1, 1.), (2, 2.), (3, 3.)], mask=[(1, 0), (0, 0), (0, 1)], dtype=[('A', int), ('B', float)]) test = fromflex(a.toflex()) assert_equal(test, a) assert_equal(test.data, a.data) def test_arraymethod(self): # Test a _arraymethod w/ n argument marray = masked_array([[1, 2, 3, 4, 5]], mask=[0, 0, 1, 0, 0]) control = masked_array([[1], [2], [3], [4], [5]], mask=[0, 0, 1, 0, 0]) assert_equal(marray.T, control) assert_equal(marray.transpose(), control) assert_equal(MaskedArray.cumsum(marray.T, 0), control.cumsum(0)) class TestMaskedArrayMathMethods(TestCase): def setUp(self): # Base data definition. x = np.array([8.375, 7.545, 8.828, 8.5, 1.757, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479, 7.189, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_cumsumprod(self): # Tests cumsum & cumprod on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d mXcp = mX.cumsum(0) assert_equal(mXcp._data, mX.filled(0).cumsum(0)) mXcp = mX.cumsum(1) assert_equal(mXcp._data, mX.filled(0).cumsum(1)) mXcp = mX.cumprod(0) assert_equal(mXcp._data, mX.filled(1).cumprod(0)) mXcp = mX.cumprod(1) assert_equal(mXcp._data, mX.filled(1).cumprod(1)) def test_cumsumprod_with_output(self): # Tests cumsum/cumprod w/ output xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked for funcname in ('cumsum', 'cumprod'): npfunc = getattr(np, funcname) xmmeth = getattr(xm, funcname) # A ndarray as explicit input output = np.empty((3, 4), dtype=float) output.fill(-9999) result = npfunc(xm, axis=0, out=output) # ... the result should be the given output self.assertTrue(result is output) assert_equal(result, xmmeth(axis=0, out=output)) output = empty((3, 4), dtype=int) result = xmmeth(axis=0, out=output) self.assertTrue(result is output) def test_ptp(self): # Tests ptp on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d (n, m) = X.shape assert_equal(mx.ptp(), mx.compressed().ptp()) rows = np.zeros(n, np.float) cols = np.zeros(m, np.float) for k in range(m): cols[k] = mX[:, k].compressed().ptp() for k in range(n): rows[k] = mX[k].compressed().ptp() assert_equal(mX.ptp(0), cols) assert_equal(mX.ptp(1), rows) def test_add_object(self): x = masked_array(['a', 'b'], mask=[1, 0], dtype=object) y = x + 'x' assert_equal(y[1], 'bx') assert_(y.mask[0]) def test_sum_object(self): # Test sum on object dtype a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=np.object) assert_equal(a.sum(), 5) a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object) assert_equal(a.sum(axis=0), [5, 7, 9]) def test_prod_object(self): # Test prod on object dtype a = masked_array([1, 2, 3], mask=[1, 0, 0], dtype=np.object) assert_equal(a.prod(), 2 * 3) a = masked_array([[1, 2, 3], [4, 5, 6]], dtype=object) assert_equal(a.prod(axis=0), [4, 10, 18]) def test_meananom_object(self): # Test mean/anom on object dtype a = masked_array([1, 2, 3], dtype=np.object) assert_equal(a.mean(), 2) assert_equal(a.anom(), [-1, 0, 1]) def test_trace(self): # Tests trace on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d mXdiag = mX.diagonal() assert_equal(mX.trace(), mX.diagonal().compressed().sum()) assert_almost_equal(mX.trace(), X.trace() - sum(mXdiag.mask * X.diagonal(), axis=0)) assert_equal(np.trace(mX), mX.trace()) def test_dot(self): # Tests dot on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d fx = mx.filled(0) r = mx.dot(mx) assert_almost_equal(r.filled(0), fx.dot(fx)) assert_(r.mask is nomask) fX = mX.filled(0) r = mX.dot(mX) assert_almost_equal(r.filled(0), fX.dot(fX)) assert_(r.mask[1,3]) r1 = empty_like(r) mX.dot(mX, out=r1) assert_almost_equal(r, r1) mYY = mXX.swapaxes(-1, -2) fXX, fYY = mXX.filled(0), mYY.filled(0) r = mXX.dot(mYY) assert_almost_equal(r.filled(0), fXX.dot(fYY)) r1 = empty_like(r) mXX.dot(mYY, out=r1) assert_almost_equal(r, r1) def test_dot_shape_mismatch(self): # regression test x = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]]) y = masked_array([[1,2],[3,4]], mask=[[0,1],[0,0]]) z = masked_array([[0,1],[3,3]]) x.dot(y, out=z) assert_almost_equal(z.filled(0), [[1, 0], [15, 16]]) assert_almost_equal(z.mask, [[0, 1], [0, 0]]) def test_varmean_nomask(self): # gh-5769 foo = array([1,2,3,4], dtype='f8') bar = array([1,2,3,4], dtype='f8') assert_equal(type(foo.mean()), np.float64) assert_equal(type(foo.var()), np.float64) assert((foo.mean() == bar.mean()) is np.bool_(True)) # check array type is preserved and out works foo = array(np.arange(16).reshape((4,4)), dtype='f8') bar = empty(4, dtype='f4') assert_equal(type(foo.mean(axis=1)), MaskedArray) assert_equal(type(foo.var(axis=1)), MaskedArray) assert_(foo.mean(axis=1, out=bar) is bar) assert_(foo.var(axis=1, out=bar) is bar) def test_varstd(self): # Tests var & std on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_almost_equal(mX.var(axis=None), mX.compressed().var()) assert_almost_equal(mX.std(axis=None), mX.compressed().std()) assert_almost_equal(mX.std(axis=None, ddof=1), mX.compressed().std(ddof=1)) assert_almost_equal(mX.var(axis=None, ddof=1), mX.compressed().var(ddof=1)) assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape) assert_equal(mX.var().shape, X.var().shape) (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) assert_almost_equal(mX.var(axis=None, ddof=2), mX.compressed().var(ddof=2)) assert_almost_equal(mX.std(axis=None, ddof=2), mX.compressed().std(ddof=2)) for k in range(6): assert_almost_equal(mXvar1[k], mX[k].compressed().var()) assert_almost_equal(mXvar0[k], mX[:, k].compressed().var()) assert_almost_equal(np.sqrt(mXvar0[k]), mX[:, k].compressed().std()) @suppress_copy_mask_on_assignment def test_varstd_specialcases(self): # Test a special case for var nout = np.array(-1, dtype=float) mout = array(-1, dtype=float) x = array(arange(10), mask=True) for methodname in ('var', 'std'): method = getattr(x, methodname) self.assertTrue(method() is masked) self.assertTrue(method(0) is masked) self.assertTrue(method(-1) is masked) # Using a masked array as explicit output method(out=mout) self.assertTrue(mout is not masked) assert_equal(mout.mask, True) # Using a ndarray as explicit output method(out=nout) self.assertTrue(np.isnan(nout)) x = array(arange(10), mask=True) x[-1] = 9 for methodname in ('var', 'std'): method = getattr(x, methodname) self.assertTrue(method(ddof=1) is masked) self.assertTrue(method(0, ddof=1) is masked) self.assertTrue(method(-1, ddof=1) is masked) # Using a masked array as explicit output method(out=mout, ddof=1) self.assertTrue(mout is not masked) assert_equal(mout.mask, True) # Using a ndarray as explicit output method(out=nout, ddof=1) self.assertTrue(np.isnan(nout)) def test_varstd_ddof(self): a = array([[1, 1, 0], [1, 1, 0]], mask=[[0, 0, 1], [0, 0, 1]]) test = a.std(axis=0, ddof=0) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [0, 0, 1]) test = a.std(axis=0, ddof=1) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [0, 0, 1]) test = a.std(axis=0, ddof=2) assert_equal(test.filled(0), [0, 0, 0]) assert_equal(test.mask, [1, 1, 1]) def test_diag(self): # Test diag x = arange(9).reshape((3, 3)) x[1, 1] = masked out = np.diag(x) assert_equal(out, [0, 4, 8]) out = diag(x) assert_equal(out, [0, 4, 8]) assert_equal(out.mask, [0, 1, 0]) out = diag(out) control = array([[0, 0, 0], [0, 4, 0], [0, 0, 8]], mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) assert_equal(out, control) def test_axis_methods_nomask(self): # Test the combination nomask & methods w/ axis a = array([[1, 2, 3], [4, 5, 6]]) assert_equal(a.sum(0), [5, 7, 9]) assert_equal(a.sum(-1), [6, 15]) assert_equal(a.sum(1), [6, 15]) assert_equal(a.prod(0), [4, 10, 18]) assert_equal(a.prod(-1), [6, 120]) assert_equal(a.prod(1), [6, 120]) assert_equal(a.min(0), [1, 2, 3]) assert_equal(a.min(-1), [1, 4]) assert_equal(a.min(1), [1, 4]) assert_equal(a.max(0), [4, 5, 6]) assert_equal(a.max(-1), [3, 6]) assert_equal(a.max(1), [3, 6]) class TestMaskedArrayMathMethodsComplex(TestCase): # Test class for miscellaneous MaskedArrays methods. def setUp(self): # Base data definition. x = np.array([8.375j, 7.545j, 8.828j, 8.5j, 1.757j, 5.928, 8.43, 7.78, 9.865, 5.878, 8.979, 4.732, 3.012, 6.022, 5.095, 3.116, 5.238, 3.957, 6.04, 9.63, 7.712, 3.382, 4.489, 6.479j, 7.189j, 9.645, 5.395, 4.961, 9.894, 2.893, 7.357, 9.828, 6.272, 3.758, 6.693, 0.993j]) X = x.reshape(6, 6) XX = x.reshape(3, 2, 2, 3) m = np.array([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0]) mx = array(data=x, mask=m) mX = array(data=X, mask=m.reshape(X.shape)) mXX = array(data=XX, mask=m.reshape(XX.shape)) m2 = np.array([1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1]) m2x = array(data=x, mask=m2) m2X = array(data=X, mask=m2.reshape(X.shape)) m2XX = array(data=XX, mask=m2.reshape(XX.shape)) self.d = (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) def test_varstd(self): # Tests var & std on MaskedArrays. (x, X, XX, m, mx, mX, mXX, m2x, m2X, m2XX) = self.d assert_almost_equal(mX.var(axis=None), mX.compressed().var()) assert_almost_equal(mX.std(axis=None), mX.compressed().std()) assert_equal(mXX.var(axis=3).shape, XX.var(axis=3).shape) assert_equal(mX.var().shape, X.var().shape) (mXvar0, mXvar1) = (mX.var(axis=0), mX.var(axis=1)) assert_almost_equal(mX.var(axis=None, ddof=2), mX.compressed().var(ddof=2)) assert_almost_equal(mX.std(axis=None, ddof=2), mX.compressed().std(ddof=2)) for k in range(6): assert_almost_equal(mXvar1[k], mX[k].compressed().var()) assert_almost_equal(mXvar0[k], mX[:, k].compressed().var()) assert_almost_equal(np.sqrt(mXvar0[k]), mX[:, k].compressed().std()) class TestMaskedArrayFunctions(TestCase): # Test class for miscellaneous functions. def setUp(self): x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) xm.set_fill_value(1e+20) self.info = (xm, ym) def test_masked_where_bool(self): x = [1, 2] y = masked_where(False, x) assert_equal(y, [1, 2]) assert_equal(y[1], 2) def test_masked_equal_wlist(self): x = [1, 2, 3] mx = masked_equal(x, 3) assert_equal(mx, x) assert_equal(mx._mask, [0, 0, 1]) mx = masked_not_equal(x, 3) assert_equal(mx, x) assert_equal(mx._mask, [1, 1, 0]) def test_masked_equal_fill_value(self): x = [1, 2, 3] mx = masked_equal(x, 3) assert_equal(mx._mask, [0, 0, 1]) assert_equal(mx.fill_value, 3) def test_masked_where_condition(self): # Tests masking functions. x = array([1., 2., 3., 4., 5.]) x[2] = masked assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2)) assert_equal(masked_where(greater_equal(x, 2), x), masked_greater_equal(x, 2)) assert_equal(masked_where(less(x, 2), x), masked_less(x, 2)) assert_equal(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2)) assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2)) assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]), [99, 99, 3, 4, 5]) def test_masked_where_oddities(self): # Tests some generic features. atest = ones((10, 10, 10), dtype=float) btest = zeros(atest.shape, MaskType) ctest = masked_where(btest, atest) assert_equal(atest, ctest) def test_masked_where_shape_constraint(self): a = arange(10) try: test = masked_equal(1, a) except IndexError: pass else: raise AssertionError("Should have failed...") test = masked_equal(a, 1) assert_equal(test.mask, [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) def test_masked_where_structured(self): # test that masked_where on a structured array sets a structured # mask (see issue #2972) a = np.zeros(10, dtype=[("A", "<f2"), ("B", "<f4")]) am = np.ma.masked_where(a["A"] < 5, a) assert_equal(am.mask.dtype.names, am.dtype.names) assert_equal(am["A"], np.ma.masked_array(np.zeros(10), np.ones(10))) def test_masked_otherfunctions(self): assert_equal(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4]) assert_equal(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199]) assert_equal(masked_inside(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 1, 3).mask, [1, 1, 1, 1, 0]) assert_equal(masked_outside(array(list(range(5)), mask=[0, 1, 0, 0, 0]), 1, 3).mask, [1, 1, 0, 0, 1]) assert_equal(masked_equal(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 0]) assert_equal(masked_not_equal(array([2, 2, 1, 2, 1], mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 1]) def test_round(self): a = array([1.23456, 2.34567, 3.45678, 4.56789, 5.67890], mask=[0, 1, 0, 0, 0]) assert_equal(a.round(), [1., 2., 3., 5., 6.]) assert_equal(a.round(1), [1.2, 2.3, 3.5, 4.6, 5.7]) assert_equal(a.round(3), [1.235, 2.346, 3.457, 4.568, 5.679]) b = empty_like(a) a.round(out=b) assert_equal(b, [1., 2., 3., 5., 6.]) x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) def test_round_with_output(self): # Testing round with an explicit output xm = array(np.random.uniform(0, 10, 12)).reshape(3, 4) xm[:, 0] = xm[0] = xm[-1, -1] = masked # A ndarray as explicit input output = np.empty((3, 4), dtype=float) output.fill(-9999) result = np.round(xm, decimals=2, out=output) # ... the result should be the given output self.assertTrue(result is output) assert_equal(result, xm.round(decimals=2, out=output)) output = empty((3, 4), dtype=float) result = xm.round(decimals=2, out=output) self.assertTrue(result is output) def test_round_with_scalar(self): # Testing round with scalar/zero dimension input # GH issue 2244 a = array(1.1, mask=[False]) assert_equal(a.round(), 1) a = array(1.1, mask=[True]) assert_(a.round() is masked) a = array(1.1, mask=[False]) output = np.empty(1, dtype=float) output.fill(-9999) a.round(out=output) assert_equal(output, 1) a = array(1.1, mask=[False]) output = array(-9999., mask=[True]) a.round(out=output) assert_equal(output[()], 1) a = array(1.1, mask=[True]) output = array(-9999., mask=[False]) a.round(out=output) assert_(output[()] is masked) def test_identity(self): a = identity(5) self.assertTrue(isinstance(a, MaskedArray)) assert_equal(a, np.identity(5)) def test_power(self): x = -1.1 assert_almost_equal(power(x, 2.), 1.21) self.assertTrue(power(x, masked) is masked) x = array([-1.1, -1.1, 1.1, 1.1, 0.]) b = array([0.5, 2., 0.5, 2., -1.], mask=[0, 0, 0, 0, 1]) y = power(x, b) assert_almost_equal(y, [0, 1.21, 1.04880884817, 1.21, 0.]) assert_equal(y._mask, [1, 0, 0, 0, 1]) b.mask = nomask y = power(x, b) assert_equal(y._mask, [1, 0, 0, 0, 1]) z = x ** b assert_equal(z._mask, y._mask) assert_almost_equal(z, y) assert_almost_equal(z._data, y._data) x **= b assert_equal(x._mask, y._mask) assert_almost_equal(x, y) assert_almost_equal(x._data, y._data) def test_power_with_broadcasting(self): # Test power w/ broadcasting a2 = np.array([[1., 2., 3.], [4., 5., 6.]]) a2m = array(a2, mask=[[1, 0, 0], [0, 0, 1]]) b1 = np.array([2, 4, 3]) b2 = np.array([b1, b1]) b2m = array(b2, mask=[[0, 1, 0], [0, 1, 0]]) ctrl = array([[1 ** 2, 2 ** 4, 3 ** 3], [4 ** 2, 5 ** 4, 6 ** 3]], mask=[[1, 1, 0], [0, 1, 1]]) # No broadcasting, base & exp w/ mask test = a2m ** b2m assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) # No broadcasting, base w/ mask, exp w/o mask test = a2m ** b2 assert_equal(test, ctrl) assert_equal(test.mask, a2m.mask) # No broadcasting, base w/o mask, exp w/ mask test = a2 ** b2m assert_equal(test, ctrl) assert_equal(test.mask, b2m.mask) ctrl = array([[2 ** 2, 4 ** 4, 3 ** 3], [2 ** 2, 4 ** 4, 3 ** 3]], mask=[[0, 1, 0], [0, 1, 0]]) test = b1 ** b2m assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) test = b2m ** b1 assert_equal(test, ctrl) assert_equal(test.mask, ctrl.mask) def test_where(self): # Test the where function x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = masked_array(x, mask=m1) ym = masked_array(y, mask=m2) xm.set_fill_value(1e+20) d = where(xm > 2, xm, -9) assert_equal(d, [-9., -9., -9., -9., -9., 4., -9., -9., 10., -9., -9., 3.]) assert_equal(d._mask, xm._mask) d = where(xm > 2, -9, ym) assert_equal(d, [5., 0., 3., 2., -1., -9., -9., -10., -9., 1., 0., -9.]) assert_equal(d._mask, [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]) d = where(xm > 2, xm, masked) assert_equal(d, [-9., -9., -9., -9., -9., 4., -9., -9., 10., -9., -9., 3.]) tmp = xm._mask.copy() tmp[(xm <= 2).filled(True)] = True assert_equal(d._mask, tmp) ixm = xm.astype(int) d = where(ixm > 2, ixm, masked) assert_equal(d, [-9, -9, -9, -9, -9, 4, -9, -9, 10, -9, -9, 3]) assert_equal(d.dtype, ixm.dtype) def test_where_object(self): a = np.array(None) b = masked_array(None) r = b.copy() assert_equal(np.ma.where(True, a, a), r) assert_equal(np.ma.where(True, b, b), r) def test_where_with_masked_choice(self): x = arange(10) x[3] = masked c = x >= 8 # Set False to masked z = where(c, x, masked) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is masked) assert_(z[7] is masked) assert_(z[8] is not masked) assert_(z[9] is not masked) assert_equal(x, z) # Set True to masked z = where(c, masked, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) def test_where_with_masked_condition(self): x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) c[0] = masked z = where(c, x, -x) assert_equal(z, [1., 2., 0., -4., -5]) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) x = arange(1, 6) x[-1] = masked y = arange(1, 6) * 10 y[2] = masked c = array([1, 1, 1, 0, 0], mask=[1, 0, 0, 0, 0]) cm = c.filled(1) z = where(c, x, y) zm = where(cm, x, y) assert_equal(z, zm) assert_(getmask(zm) is nomask) assert_equal(zm, [1, 2, 3, 40, 50]) z = where(c, masked, 1) assert_equal(z, [99, 99, 99, 1, 1]) z = where(c, 1, masked) assert_equal(z, [99, 1, 1, 99, 99]) def test_where_type(self): # Test the type conservation with where x = np.arange(4, dtype=np.int32) y = np.arange(4, dtype=np.float32) * 2.2 test = where(x > 1.5, y, x).dtype control = np.find_common_type([np.int32, np.float32], []) assert_equal(test, control) def test_where_broadcast(self): # Issue 8599 x = np.arange(9).reshape(3, 3) y = np.zeros(3) core = np.where([1, 0, 1], x, y) ma = where([1, 0, 1], x, y) assert_equal(core, ma) assert_equal(core.dtype, ma.dtype) def test_where_structured(self): # Issue 8600 dt = np.dtype([('a', int), ('b', int)]) x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt) y = np.array((10, 20), dtype=dt) core = np.where([0, 1, 1], x, y) ma = np.where([0, 1, 1], x, y) assert_equal(core, ma) assert_equal(core.dtype, ma.dtype) def test_where_structured_masked(self): dt = np.dtype([('a', int), ('b', int)]) x = np.array([(1, 2), (3, 4), (5, 6)], dtype=dt) ma = where([0, 1, 1], x, masked) expected = masked_where([1, 0, 0], x) assert_equal(ma.dtype, expected.dtype) assert_equal(ma, expected) assert_equal(ma.mask, expected.mask) def test_choose(self): # Test choose choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] chosen = choose([2, 3, 1, 0], choices) assert_equal(chosen, array([20, 31, 12, 3])) chosen = choose([2, 4, 1, 0], choices, mode='clip') assert_equal(chosen, array([20, 31, 12, 3])) chosen = choose([2, 4, 1, 0], choices, mode='wrap') assert_equal(chosen, array([20, 1, 12, 3])) # Check with some masked indices indices_ = array([2, 4, 1, 0], mask=[1, 0, 0, 1]) chosen = choose(indices_, choices, mode='wrap') assert_equal(chosen, array([99, 1, 12, 99])) assert_equal(chosen.mask, [1, 0, 0, 1]) # Check with some masked choices choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]]) indices_ = [2, 3, 1, 0] chosen = choose(indices_, choices, mode='wrap') assert_equal(chosen, array([20, 31, 12, 3])) assert_equal(chosen.mask, [1, 0, 0, 1]) def test_choose_with_out(self): # Test choose with an explicit out keyword choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] store = empty(4, dtype=int) chosen = choose([2, 3, 1, 0], choices, out=store) assert_equal(store, array([20, 31, 12, 3])) self.assertTrue(store is chosen) # Check with some masked indices + out store = empty(4, dtype=int) indices_ = array([2, 3, 1, 0], mask=[1, 0, 0, 1]) chosen = choose(indices_, choices, mode='wrap', out=store) assert_equal(store, array([99, 31, 12, 99])) assert_equal(store.mask, [1, 0, 0, 1]) # Check with some masked choices + out ina ndarray ! choices = array(choices, mask=[[0, 0, 0, 1], [1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0, 0]]) indices_ = [2, 3, 1, 0] store = empty(4, dtype=int).view(ndarray) chosen = choose(indices_, choices, mode='wrap', out=store) assert_equal(store, array([999999, 31, 12, 999999])) def test_reshape(self): a = arange(10) a[0] = masked # Try the default b = a.reshape((5, 2)) assert_equal(b.shape, (5, 2)) self.assertTrue(b.flags['C']) # Try w/ arguments as list instead of tuple b = a.reshape(5, 2) assert_equal(b.shape, (5, 2)) self.assertTrue(b.flags['C']) # Try w/ order b = a.reshape((5, 2), order='F') assert_equal(b.shape, (5, 2)) self.assertTrue(b.flags['F']) # Try w/ order b = a.reshape(5, 2, order='F') assert_equal(b.shape, (5, 2)) self.assertTrue(b.flags['F']) c = np.reshape(a, (2, 5)) self.assertTrue(isinstance(c, MaskedArray)) assert_equal(c.shape, (2, 5)) self.assertTrue(c[0, 0] is masked) self.assertTrue(c.flags['C']) def test_make_mask_descr(self): # Flexible ntype = [('a', np.float), ('b', np.float)] test = make_mask_descr(ntype) assert_equal(test, [('a', np.bool), ('b', np.bool)]) assert_(test is make_mask_descr(test)) # Standard w/ shape ntype = (np.float, 2) test = make_mask_descr(ntype) assert_equal(test, (np.bool, 2)) assert_(test is make_mask_descr(test)) # Standard standard ntype = np.float test = make_mask_descr(ntype) assert_equal(test, np.dtype(np.bool)) assert_(test is make_mask_descr(test)) # Nested ntype = [('a', np.float), ('b', [('ba', np.float), ('bb', np.float)])] test = make_mask_descr(ntype) control = np.dtype([('a', 'b1'), ('b', [('ba', 'b1'), ('bb', 'b1')])]) assert_equal(test, control) assert_(test is make_mask_descr(test)) # Named+ shape ntype = [('a', (np.float, 2))] test = make_mask_descr(ntype) assert_equal(test, np.dtype([('a', (np.bool, 2))])) assert_(test is make_mask_descr(test)) # 2 names ntype = [(('A', 'a'), float)] test = make_mask_descr(ntype) assert_equal(test, np.dtype([(('A', 'a'), bool)])) assert_(test is make_mask_descr(test)) # nested boolean types should preserve identity base_type = np.dtype([('a', int, 3)]) base_mtype = make_mask_descr(base_type) sub_type = np.dtype([('a', int), ('b', base_mtype)]) test = make_mask_descr(sub_type) assert_equal(test, np.dtype([('a', bool), ('b', [('a', bool, 3)])])) assert_(test.fields['b'][0] is base_mtype) def test_make_mask(self): # Test make_mask # w/ a list as an input mask = [0, 1] test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [0, 1]) # w/ a ndarray as an input mask = np.array([0, 1], dtype=np.bool) test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [0, 1]) # w/ a flexible-type ndarray as an input - use default mdtype = [('a', np.bool), ('b', np.bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask) assert_equal(test.dtype, MaskType) assert_equal(test, [1, 1]) # w/ a flexible-type ndarray as an input - use input dtype mdtype = [('a', np.bool), ('b', np.bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask, dtype=mask.dtype) assert_equal(test.dtype, mdtype) assert_equal(test, mask) # w/ a flexible-type ndarray as an input - use input dtype mdtype = [('a', np.float), ('b', np.float)] bdtype = [('a', np.bool), ('b', np.bool)] mask = np.array([(0, 0), (0, 1)], dtype=mdtype) test = make_mask(mask, dtype=mask.dtype) assert_equal(test.dtype, bdtype) assert_equal(test, np.array([(0, 0), (0, 1)], dtype=bdtype)) # Ensure this also works for void mask = np.array((False, True), dtype='?,?')[()] assert_(isinstance(mask, np.void)) test = make_mask(mask, dtype=mask.dtype) assert_equal(test, mask) assert_(test is not mask) mask = np.array((0, 1), dtype='i4,i4')[()] test2 = make_mask(mask, dtype=mask.dtype) assert_equal(test2, test) # test that nomask is returned when m is nomask. bools = [True, False] dtypes = [MaskType, np.float] msgformat = 'copy=%s, shrink=%s, dtype=%s' for cpy, shr, dt in itertools.product(bools, bools, dtypes): res = make_mask(nomask, copy=cpy, shrink=shr, dtype=dt) assert_(res is nomask, msgformat % (cpy, shr, dt)) def test_mask_or(self): # Initialize mtype = [('a', np.bool), ('b', np.bool)] mask = np.array([(0, 0), (0, 1), (1, 0), (0, 0)], dtype=mtype) # Test using nomask as input test = mask_or(mask, nomask) assert_equal(test, mask) test = mask_or(nomask, mask) assert_equal(test, mask) # Using False as input test = mask_or(mask, False) assert_equal(test, mask) # Using another array w / the same dtype other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=mtype) test = mask_or(mask, other) control = np.array([(0, 1), (0, 1), (1, 1), (0, 1)], dtype=mtype) assert_equal(test, control) # Using another array w / a different dtype othertype = [('A', np.bool), ('B', np.bool)] other = np.array([(0, 1), (0, 1), (0, 1), (0, 1)], dtype=othertype) try: test = mask_or(mask, other) except ValueError: pass # Using nested arrays dtype = [('a', np.bool), ('b', [('ba', np.bool), ('bb', np.bool)])] amask = np.array([(0, (1, 0)), (0, (1, 0))], dtype=dtype) bmask = np.array([(1, (0, 1)), (0, (0, 0))], dtype=dtype) cntrl = np.array([(1, (1, 1)), (0, (1, 0))], dtype=dtype) assert_equal(mask_or(amask, bmask), cntrl) def test_flatten_mask(self): # Tests flatten mask # Standard dtype mask = np.array([0, 0, 1], dtype=np.bool) assert_equal(flatten_mask(mask), mask) # Flexible dtype mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)]) test = flatten_mask(mask) control = np.array([0, 0, 0, 1], dtype=bool) assert_equal(test, control) mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])] data = [(0, (0, 0)), (0, (0, 1))] mask = np.array(data, dtype=mdtype) test = flatten_mask(mask) control = np.array([0, 0, 0, 0, 0, 1], dtype=bool) assert_equal(test, control) def test_on_ndarray(self): # Test functions on ndarrays a = np.array([1, 2, 3, 4]) m = array(a, mask=False) test = anom(a) assert_equal(test, m.anom()) test = reshape(a, (2, 2)) assert_equal(test, m.reshape(2, 2)) def test_compress(self): # Test compress function on ndarray and masked array # Address Github #2495. arr = np.arange(8) arr.shape = 4, 2 cond = np.array([True, False, True, True]) control = arr[[0, 2, 3]] test = np.ma.compress(cond, arr, axis=0) assert_equal(test, control) marr = np.ma.array(arr) test = np.ma.compress(cond, marr, axis=0) assert_equal(test, control) def test_compressed(self): # Test ma.compressed function. # Address gh-4026 a = np.ma.array([1, 2]) test = np.ma.compressed(a) assert_(type(test) is np.ndarray) # Test case when input data is ndarray subclass class A(np.ndarray): pass a = np.ma.array(A(shape=0)) test = np.ma.compressed(a) assert_(type(test) is A) # Test that compress flattens test = np.ma.compressed([[1],[2]]) assert_equal(test.ndim, 1) test = np.ma.compressed([[[[[1]]]]]) assert_equal(test.ndim, 1) # Test case when input is MaskedArray subclass class M(MaskedArray): pass test = np.ma.compressed(M(shape=(0,1,2))) assert_equal(test.ndim, 1) # with .compressed() overridden class M(MaskedArray): def compressed(self): return 42 test = np.ma.compressed(M(shape=(0,1,2))) assert_equal(test, 42) def test_convolve(self): a = masked_equal(np.arange(5), 2) b = np.array([1, 1]) test = np.ma.convolve(a, b) assert_equal(test, masked_equal([0, 1, -1, -1, 7, 4], -1)) test = np.ma.convolve(a, b, propagate_mask=False) assert_equal(test, masked_equal([0, 1, 1, 3, 7, 4], -1)) test = np.ma.convolve([1, 1], [1, 1, 1]) assert_equal(test, masked_equal([1, 2, 2, 1], -1)) a = [1, 1] b = masked_equal([1, -1, -1, 1], -1) test = np.ma.convolve(a, b, propagate_mask=False) assert_equal(test, masked_equal([1, 1, -1, 1, 1], -1)) test = np.ma.convolve(a, b, propagate_mask=True) assert_equal(test, masked_equal([-1, -1, -1, -1, -1], -1)) class TestMaskedFields(TestCase): def setUp(self): ilist = [1, 2, 3, 4, 5] flist = [1.1, 2.2, 3.3, 4.4, 5.5] slist = ['one', 'two', 'three', 'four', 'five'] ddtype = [('a', int), ('b', float), ('c', '|S8')] mdtype = [('a', bool), ('b', bool), ('c', bool)] mask = [0, 1, 0, 0, 1] base = array(list(zip(ilist, flist, slist)), mask=mask, dtype=ddtype) self.data = dict(base=base, mask=mask, ddtype=ddtype, mdtype=mdtype) def test_set_records_masks(self): base = self.data['base'] mdtype = self.data['mdtype'] # Set w/ nomask or masked base.mask = nomask assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype)) base.mask = masked assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype)) # Set w/ simple boolean base.mask = False assert_equal_records(base._mask, np.zeros(base.shape, dtype=mdtype)) base.mask = True assert_equal_records(base._mask, np.ones(base.shape, dtype=mdtype)) # Set w/ list base.mask = [0, 0, 0, 1, 1] assert_equal_records(base._mask, np.array([(x, x, x) for x in [0, 0, 0, 1, 1]], dtype=mdtype)) def test_set_record_element(self): # Check setting an element of a record) base = self.data['base'] (base_a, base_b, base_c) = (base['a'], base['b'], base['c']) base[0] = (pi, pi, 'pi') assert_equal(base_a.dtype, int) assert_equal(base_a._data, [3, 2, 3, 4, 5]) assert_equal(base_b.dtype, float) assert_equal(base_b._data, [pi, 2.2, 3.3, 4.4, 5.5]) assert_equal(base_c.dtype, '|S8') assert_equal(base_c._data, [b'pi', b'two', b'three', b'four', b'five']) def test_set_record_slice(self): base = self.data['base'] (base_a, base_b, base_c) = (base['a'], base['b'], base['c']) base[:3] = (pi, pi, 'pi') assert_equal(base_a.dtype, int) assert_equal(base_a._data, [3, 3, 3, 4, 5]) assert_equal(base_b.dtype, float) assert_equal(base_b._data, [pi, pi, pi, 4.4, 5.5]) assert_equal(base_c.dtype, '|S8') assert_equal(base_c._data, [b'pi', b'pi', b'pi', b'four', b'five']) def test_mask_element(self): "Check record access" base = self.data['base'] base[0] = masked for n in ('a', 'b', 'c'): assert_equal(base[n].mask, [1, 1, 0, 0, 1]) assert_equal(base[n]._data, base._data[n]) def test_getmaskarray(self): # Test getmaskarray on flexible dtype ndtype = [('a', int), ('b', float)] test = empty(3, dtype=ndtype) assert_equal(getmaskarray(test), np.array([(0, 0), (0, 0), (0, 0)], dtype=[('a', '|b1'), ('b', '|b1')])) test[:] = masked assert_equal(getmaskarray(test), np.array([(1, 1), (1, 1), (1, 1)], dtype=[('a', '|b1'), ('b', '|b1')])) def test_view(self): # Test view w/ flexible dtype iterator = list(zip(np.arange(10), np.random.rand(10))) data = np.array(iterator) a = array(iterator, dtype=[('a', float), ('b', float)]) a.mask[0] = (1, 0) controlmask = np.array([1] + 19 * [0], dtype=bool) # Transform globally to simple dtype test = a.view(float) assert_equal(test, data.ravel()) assert_equal(test.mask, controlmask) # Transform globally to dty test = a.view((float, 2)) assert_equal(test, data) assert_equal(test.mask, controlmask.reshape(-1, 2)) test = a.view((float, 2), np.matrix) assert_equal(test, data) self.assertTrue(isinstance(test, np.matrix)) def test_getitem(self): ndtype = [('a', float), ('b', float)] a = array(list(zip(np.random.rand(10), np.arange(10))), dtype=ndtype) a.mask = np.array(list(zip([0, 0, 0, 0, 0, 0, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0, 1, 0])), dtype=[('a', bool), ('b', bool)]) def _test_index(i): assert_equal(type(a[i]), mvoid) assert_equal_records(a[i]._data, a._data[i]) assert_equal_records(a[i]._mask, a._mask[i]) assert_equal(type(a[i, ...]), MaskedArray) assert_equal_records(a[i,...]._data, a._data[i,...]) assert_equal_records(a[i,...]._mask, a._mask[i,...]) _test_index(1) # No mask _test_index(0) # One element masked _test_index(-2) # All element masked def test_setitem(self): # Issue 4866: check that one can set individual items in [record][col] # and [col][record] order ndtype = np.dtype([('a', float), ('b', int)]) ma = np.ma.MaskedArray([(1.0, 1), (2.0, 2)], dtype=ndtype) ma['a'][1] = 3.0 assert_equal(ma['a'], np.array([1.0, 3.0])) ma[1]['a'] = 4.0 assert_equal(ma['a'], np.array([1.0, 4.0])) # Issue 2403 mdtype = np.dtype([('a', bool), ('b', bool)]) # soft mask control = np.array([(False, True), (True, True)], dtype=mdtype) a = np.ma.masked_all((2,), dtype=ndtype) a['a'][0] = 2 assert_equal(a.mask, control) a = np.ma.masked_all((2,), dtype=ndtype) a[0]['a'] = 2 assert_equal(a.mask, control) # hard mask control = np.array([(True, True), (True, True)], dtype=mdtype) a = np.ma.masked_all((2,), dtype=ndtype) a.harden_mask() a['a'][0] = 2 assert_equal(a.mask, control) a = np.ma.masked_all((2,), dtype=ndtype) a.harden_mask() a[0]['a'] = 2 assert_equal(a.mask, control) def test_setitem_scalar(self): # 8510 mask_0d = np.ma.masked_array(1, mask=True) arr = np.ma.arange(3) arr[0] = mask_0d assert_array_equal(arr.mask, [True, False, False]) def test_element_len(self): # check that len() works for mvoid (Github issue #576) for rec in self.data['base']: assert_equal(len(rec), len(self.data['ddtype'])) class TestMaskedObjectArray(TestCase): def test_getitem(self): arr = np.ma.array([None, None]) for dt in [float, object]: a0 = np.eye(2).astype(dt) a1 = np.eye(3).astype(dt) arr[0] = a0 arr[1] = a1 assert_(arr[0] is a0) assert_(arr[1] is a1) assert_(isinstance(arr[0,...], MaskedArray)) assert_(isinstance(arr[1,...], MaskedArray)) assert_(arr[0,...][()] is a0) assert_(arr[1,...][()] is a1) arr[0] = np.ma.masked assert_(arr[1] is a1) assert_(isinstance(arr[0,...], MaskedArray)) assert_(isinstance(arr[1,...], MaskedArray)) assert_equal(arr[0,...].mask, True) assert_(arr[1,...][()] is a1) # gh-5962 - object arrays of arrays do something special assert_equal(arr[0].data, a0) assert_equal(arr[0].mask, True) assert_equal(arr[0,...][()].data, a0) assert_equal(arr[0,...][()].mask, True) def test_nested_ma(self): arr = np.ma.array([None, None]) # set the first object to be an unmasked masked constant. A little fiddly arr[0,...] = np.array([np.ma.masked], object)[0,...] # check the above line did what we were aiming for assert_(arr.data[0] is np.ma.masked) # test that getitem returned the value by identity assert_(arr[0] is np.ma.masked) # now mask the masked value! arr[0] = np.ma.masked assert_(arr[0] is np.ma.masked) class TestMaskedView(TestCase): def setUp(self): iterator = list(zip(np.arange(10), np.random.rand(10))) data = np.array(iterator) a = array(iterator, dtype=[('a', float), ('b', float)]) a.mask[0] = (1, 0) controlmask = np.array([1] + 19 * [0], dtype=bool) self.data = (data, a, controlmask) def test_view_to_nothing(self): (data, a, controlmask) = self.data test = a.view() self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test._data, a._data) assert_equal(test._mask, a._mask) def test_view_to_type(self): (data, a, controlmask) = self.data test = a.view(np.ndarray) self.assertTrue(not isinstance(test, MaskedArray)) assert_equal(test, a._data) assert_equal_records(test, data.view(a.dtype).squeeze()) def test_view_to_simple_dtype(self): (data, a, controlmask) = self.data # View globally test = a.view(float) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test, data.ravel()) assert_equal(test.mask, controlmask) def test_view_to_flexible_dtype(self): (data, a, controlmask) = self.data test = a.view([('A', float), ('B', float)]) assert_equal(test.mask.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a']) assert_equal(test['B'], a['b']) test = a[0].view([('A', float), ('B', float)]) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test.mask.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a'][0]) assert_equal(test['B'], a['b'][0]) test = a[-1].view([('A', float), ('B', float)]) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test.dtype.names, ('A', 'B')) assert_equal(test['A'], a['a'][-1]) assert_equal(test['B'], a['b'][-1]) def test_view_to_subdtype(self): (data, a, controlmask) = self.data # View globally test = a.view((float, 2)) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test, data) assert_equal(test.mask, controlmask.reshape(-1, 2)) # View on 1 masked element test = a[0].view((float, 2)) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test, data[0]) assert_equal(test.mask, (1, 0)) # View on 1 unmasked element test = a[-1].view((float, 2)) self.assertTrue(isinstance(test, MaskedArray)) assert_equal(test, data[-1]) def test_view_to_dtype_and_type(self): (data, a, controlmask) = self.data test = a.view((float, 2), np.matrix) assert_equal(test, data) self.assertTrue(isinstance(test, np.matrix)) self.assertTrue(not isinstance(test, MaskedArray)) class TestOptionalArgs(TestCase): def test_ndarrayfuncs(self): # test axis arg behaves the same as ndarray (including multiple axes) d = np.arange(24.0).reshape((2,3,4)) m = np.zeros(24, dtype=bool).reshape((2,3,4)) # mask out last element of last dimension m[:,:,-1] = True a = np.ma.array(d, mask=m) def testaxis(f, a, d): numpy_f = numpy.__getattribute__(f) ma_f = np.ma.__getattribute__(f) # test axis arg assert_equal(ma_f(a, axis=1)[...,:-1], numpy_f(d[...,:-1], axis=1)) assert_equal(ma_f(a, axis=(0,1))[...,:-1], numpy_f(d[...,:-1], axis=(0,1))) def testkeepdims(f, a, d): numpy_f = numpy.__getattribute__(f) ma_f = np.ma.__getattribute__(f) # test keepdims arg assert_equal(ma_f(a, keepdims=True).shape, numpy_f(d, keepdims=True).shape) assert_equal(ma_f(a, keepdims=False).shape, numpy_f(d, keepdims=False).shape) # test both at once assert_equal(ma_f(a, axis=1, keepdims=True)[...,:-1], numpy_f(d[...,:-1], axis=1, keepdims=True)) assert_equal(ma_f(a, axis=(0,1), keepdims=True)[...,:-1], numpy_f(d[...,:-1], axis=(0,1), keepdims=True)) for f in ['sum', 'prod', 'mean', 'var', 'std']: testaxis(f, a, d) testkeepdims(f, a, d) for f in ['min', 'max']: testaxis(f, a, d) d = (np.arange(24).reshape((2,3,4))%2 == 0) a = np.ma.array(d, mask=m) for f in ['all', 'any']: testaxis(f, a, d) testkeepdims(f, a, d) def test_count(self): # test np.ma.count specially d = np.arange(24.0).reshape((2,3,4)) m = np.zeros(24, dtype=bool).reshape((2,3,4)) m[:,0,:] = True a = np.ma.array(d, mask=m) assert_equal(count(a), 16) assert_equal(count(a, axis=1), 2*ones((2,4))) assert_equal(count(a, axis=(0,1)), 4*ones((4,))) assert_equal(count(a, keepdims=True), 16*ones((1,1,1))) assert_equal(count(a, axis=1, keepdims=True), 2*ones((2,1,4))) assert_equal(count(a, axis=(0,1), keepdims=True), 4*ones((1,1,4))) assert_equal(count(a, axis=-2), 2*ones((2,4))) assert_raises(ValueError, count, a, axis=(1,1)) assert_raises(np.AxisError, count, a, axis=3) # check the 'nomask' path a = np.ma.array(d, mask=nomask) assert_equal(count(a), 24) assert_equal(count(a, axis=1), 3*ones((2,4))) assert_equal(count(a, axis=(0,1)), 6*ones((4,))) assert_equal(count(a, keepdims=True), 24*ones((1,1,1))) assert_equal(np.ndim(count(a, keepdims=True)), 3) assert_equal(count(a, axis=1, keepdims=True), 3*ones((2,1,4))) assert_equal(count(a, axis=(0,1), keepdims=True), 6*ones((1,1,4))) assert_equal(count(a, axis=-2), 3*ones((2,4))) assert_raises(ValueError, count, a, axis=(1,1)) assert_raises(np.AxisError, count, a, axis=3) # check the 'masked' singleton assert_equal(count(np.ma.masked), 0) # check 0-d arrays do not allow axis > 0 assert_raises(np.AxisError, count, np.ma.array(1), axis=1) class TestMaskedConstant(TestCase): def _do_add_test(self, add): # sanity check self.assertIs(add(np.ma.masked, 1), np.ma.masked) # now try with a vector vector = np.array([1, 2, 3]) result = add(np.ma.masked, vector) # lots of things could go wrong here assert_(result is not np.ma.masked) assert_(not isinstance(result, np.ma.core.MaskedConstant)) assert_equal(result.shape, vector.shape) assert_equal(np.ma.getmask(result), np.ones(vector.shape, dtype=bool)) def test_ufunc(self): self._do_add_test(np.add) def test_operator(self): self._do_add_test(lambda a, b: a + b) def test_ctor(self): m = np.ma.array(np.ma.masked) # most importantly, we do not want to create a new MaskedConstant # instance assert_(not isinstance(m, np.ma.core.MaskedConstant)) assert_(m is not np.ma.masked) def test_masked_array(): a = np.ma.array([0, 1, 2, 3], mask=[0, 0, 1, 0]) assert_equal(np.argwhere(a), [[1], [3]]) def test_append_masked_array(): a = np.ma.masked_equal([1,2,3], value=2) b = np.ma.masked_equal([4,3,2], value=2) result = np.ma.append(a, b) expected_data = [1, 2, 3, 4, 3, 2] expected_mask = [False, True, False, False, False, True] assert_array_equal(result.data, expected_data) assert_array_equal(result.mask, expected_mask) a = np.ma.masked_all((2,2)) b = np.ma.ones((3,1)) result = np.ma.append(a, b) expected_data = [1] * 3 expected_mask = [True] * 4 + [False] * 3 assert_array_equal(result.data[-3], expected_data) assert_array_equal(result.mask, expected_mask) result = np.ma.append(a, b, axis=None) assert_array_equal(result.data[-3], expected_data) assert_array_equal(result.mask, expected_mask) def test_append_masked_array_along_axis(): a = np.ma.masked_equal([1,2,3], value=2) b = np.ma.masked_values([[4, 5, 6], [7, 8, 9]], 7) # When `axis` is specified, `values` must have the correct shape. assert_raises(ValueError, np.ma.append, a, b, axis=0) result = np.ma.append(a[np.newaxis,:], b, axis=0) expected = np.ma.arange(1, 10) expected[[1, 6]] = np.ma.masked expected = expected.reshape((3,3)) assert_array_equal(result.data, expected.data) assert_array_equal(result.mask, expected.mask) def test_default_fill_value_complex(): # regression test for Python 3, where 'unicode' was not defined assert_(default_fill_value(1 + 1j) == 1.e20 + 0.0j) def test_ufunc_with_output(): # check that giving an output argument always returns that output. # Regression test for gh-8416. x = array([1., 2., 3.], mask=[0, 0, 1]) y = np.add(x, 1., out=x) assert_(y is x) ############################################################################### if __name__ == "__main__": run_module_suite()