%PDF- %PDF-
Direktori : /proc/self/root/proc/self/root/proc/self/root/proc/self/root/usr/include/OpenEXR/ |
Current File : //proc/self/root/proc/self/root/proc/self/root/proc/self/root/usr/include/OpenEXR/ImathBox.h |
/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2004-2012, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHBOX_H #define INCLUDED_IMATHBOX_H //------------------------------------------------------------------- // // class Imath::Box<class T> // -------------------------------- // // This class imposes the following requirements on its // parameter class: // // 1) The class T must implement these operators: // + - < > <= >= = // with the signature (T,T) and the expected // return values for a numeric type. // // 2) The class T must implement operator= // with the signature (T,float and/or double) // // 3) The class T must have a constructor which takes // a float (and/or double) for use in initializing the box. // // 4) The class T must have a function T::dimensions() // which returns the number of dimensions in the class // (since its assumed its a vector) -- preferably, this // returns a constant expression. // //------------------------------------------------------------------- #include "ImathVec.h" #include "ImathNamespace.h" IMATH_INTERNAL_NAMESPACE_HEADER_ENTER template <class T> class Box { public: //------------------------- // Data Members are public //------------------------- T min; T max; //----------------------------------------------------- // Constructors - an "empty" box is created by default //----------------------------------------------------- Box (); Box (const T &point); Box (const T &minT, const T &maxT); //-------------------- // Operators: ==, != //-------------------- bool operator == (const Box<T> &src) const; bool operator != (const Box<T> &src) const; //------------------ // Box manipulation //------------------ void makeEmpty (); void extendBy (const T &point); void extendBy (const Box<T> &box); void makeInfinite (); //--------------------------------------------------- // Query functions - these compute results each time //--------------------------------------------------- T size () const; T center () const; bool intersects (const T &point) const; bool intersects (const Box<T> &box) const; unsigned int majorAxis () const; //---------------- // Classification //---------------- bool isEmpty () const; bool hasVolume () const; bool isInfinite () const; }; //-------------------- // Convenient typedefs //-------------------- typedef Box <V2s> Box2s; typedef Box <V2i> Box2i; typedef Box <V2f> Box2f; typedef Box <V2d> Box2d; typedef Box <V3s> Box3s; typedef Box <V3i> Box3i; typedef Box <V3f> Box3f; typedef Box <V3d> Box3d; //---------------- // Implementation template <class T> inline Box<T>::Box() { makeEmpty(); } template <class T> inline Box<T>::Box (const T &point) { min = point; max = point; } template <class T> inline Box<T>::Box (const T &minT, const T &maxT) { min = minT; max = maxT; } template <class T> inline bool Box<T>::operator == (const Box<T> &src) const { return (min == src.min && max == src.max); } template <class T> inline bool Box<T>::operator != (const Box<T> &src) const { return (min != src.min || max != src.max); } template <class T> inline void Box<T>::makeEmpty() { min = T(T::baseTypeMax()); max = T(T::baseTypeMin()); } template <class T> inline void Box<T>::makeInfinite() { min = T(T::baseTypeMin()); max = T(T::baseTypeMax()); } template <class T> inline void Box<T>::extendBy(const T &point) { for (unsigned int i = 0; i < min.dimensions(); i++) { if (point[i] < min[i]) min[i] = point[i]; if (point[i] > max[i]) max[i] = point[i]; } } template <class T> inline void Box<T>::extendBy(const Box<T> &box) { for (unsigned int i = 0; i < min.dimensions(); i++) { if (box.min[i] < min[i]) min[i] = box.min[i]; if (box.max[i] > max[i]) max[i] = box.max[i]; } } template <class T> inline bool Box<T>::intersects(const T &point) const { for (unsigned int i = 0; i < min.dimensions(); i++) { if (point[i] < min[i] || point[i] > max[i]) return false; } return true; } template <class T> inline bool Box<T>::intersects(const Box<T> &box) const { for (unsigned int i = 0; i < min.dimensions(); i++) { if (box.max[i] < min[i] || box.min[i] > max[i]) return false; } return true; } template <class T> inline T Box<T>::size() const { if (isEmpty()) return T (0); return max - min; } template <class T> inline T Box<T>::center() const { return (max + min) / 2; } template <class T> inline bool Box<T>::isEmpty() const { for (unsigned int i = 0; i < min.dimensions(); i++) { if (max[i] < min[i]) return true; } return false; } template <class T> inline bool Box<T>::isInfinite() const { for (unsigned int i = 0; i < min.dimensions(); i++) { if (min[i] != T::baseTypeMin() || max[i] != T::baseTypeMax()) return false; } return true; } template <class T> inline bool Box<T>::hasVolume() const { for (unsigned int i = 0; i < min.dimensions(); i++) { if (max[i] <= min[i]) return false; } return true; } template<class T> inline unsigned int Box<T>::majorAxis() const { unsigned int major = 0; T s = size(); for (unsigned int i = 1; i < min.dimensions(); i++) { if (s[i] > s[major]) major = i; } return major; } //------------------------------------------------------------------- // // Partial class specializations for Imath::Vec2<T> and Imath::Vec3<T> // //------------------------------------------------------------------- template <typename T> class Box; template <class T> class Box<Vec2<T> > { public: //------------------------- // Data Members are public //------------------------- Vec2<T> min; Vec2<T> max; //----------------------------------------------------- // Constructors - an "empty" box is created by default //----------------------------------------------------- Box(); Box (const Vec2<T> &point); Box (const Vec2<T> &minT, const Vec2<T> &maxT); //-------------------- // Operators: ==, != //-------------------- bool operator == (const Box<Vec2<T> > &src) const; bool operator != (const Box<Vec2<T> > &src) const; //------------------ // Box manipulation //------------------ void makeEmpty(); void extendBy (const Vec2<T> &point); void extendBy (const Box<Vec2<T> > &box); void makeInfinite(); //--------------------------------------------------- // Query functions - these compute results each time //--------------------------------------------------- Vec2<T> size() const; Vec2<T> center() const; bool intersects (const Vec2<T> &point) const; bool intersects (const Box<Vec2<T> > &box) const; unsigned int majorAxis() const; //---------------- // Classification //---------------- bool isEmpty() const; bool hasVolume() const; bool isInfinite() const; }; //---------------- // Implementation template <class T> inline Box<Vec2<T> >::Box() { makeEmpty(); } template <class T> inline Box<Vec2<T> >::Box (const Vec2<T> &point) { min = point; max = point; } template <class T> inline Box<Vec2<T> >::Box (const Vec2<T> &minT, const Vec2<T> &maxT) { min = minT; max = maxT; } template <class T> inline bool Box<Vec2<T> >::operator == (const Box<Vec2<T> > &src) const { return (min == src.min && max == src.max); } template <class T> inline bool Box<Vec2<T> >::operator != (const Box<Vec2<T> > &src) const { return (min != src.min || max != src.max); } template <class T> inline void Box<Vec2<T> >::makeEmpty() { min = Vec2<T>(Vec2<T>::baseTypeMax()); max = Vec2<T>(Vec2<T>::baseTypeMin()); } template <class T> inline void Box<Vec2<T> >::makeInfinite() { min = Vec2<T>(Vec2<T>::baseTypeMin()); max = Vec2<T>(Vec2<T>::baseTypeMax()); } template <class T> inline void Box<Vec2<T> >::extendBy (const Vec2<T> &point) { if (point[0] < min[0]) min[0] = point[0]; if (point[0] > max[0]) max[0] = point[0]; if (point[1] < min[1]) min[1] = point[1]; if (point[1] > max[1]) max[1] = point[1]; } template <class T> inline void Box<Vec2<T> >::extendBy (const Box<Vec2<T> > &box) { if (box.min[0] < min[0]) min[0] = box.min[0]; if (box.max[0] > max[0]) max[0] = box.max[0]; if (box.min[1] < min[1]) min[1] = box.min[1]; if (box.max[1] > max[1]) max[1] = box.max[1]; } template <class T> inline bool Box<Vec2<T> >::intersects (const Vec2<T> &point) const { if (point[0] < min[0] || point[0] > max[0] || point[1] < min[1] || point[1] > max[1]) return false; return true; } template <class T> inline bool Box<Vec2<T> >::intersects (const Box<Vec2<T> > &box) const { if (box.max[0] < min[0] || box.min[0] > max[0] || box.max[1] < min[1] || box.min[1] > max[1]) return false; return true; } template <class T> inline Vec2<T> Box<Vec2<T> >::size() const { if (isEmpty()) return Vec2<T> (0); return max - min; } template <class T> inline Vec2<T> Box<Vec2<T> >::center() const { return (max + min) / 2; } template <class T> inline bool Box<Vec2<T> >::isEmpty() const { if (max[0] < min[0] || max[1] < min[1]) return true; return false; } template <class T> inline bool Box<Vec2<T> > ::isInfinite() const { if (min[0] != limits<T>::min() || max[0] != limits<T>::max() || min[1] != limits<T>::min() || max[1] != limits<T>::max()) return false; return true; } template <class T> inline bool Box<Vec2<T> >::hasVolume() const { if (max[0] <= min[0] || max[1] <= min[1]) return false; return true; } template <class T> inline unsigned int Box<Vec2<T> >::majorAxis() const { unsigned int major = 0; Vec2<T> s = size(); if (s[1] > s[major]) major = 1; return major; } template <class T> class Box<Vec3<T> > { public: //------------------------- // Data Members are public //------------------------- Vec3<T> min; Vec3<T> max; //----------------------------------------------------- // Constructors - an "empty" box is created by default //----------------------------------------------------- Box(); Box (const Vec3<T> &point); Box (const Vec3<T> &minT, const Vec3<T> &maxT); //-------------------- // Operators: ==, != //-------------------- bool operator == (const Box<Vec3<T> > &src) const; bool operator != (const Box<Vec3<T> > &src) const; //------------------ // Box manipulation //------------------ void makeEmpty(); void extendBy (const Vec3<T> &point); void extendBy (const Box<Vec3<T> > &box); void makeInfinite (); //--------------------------------------------------- // Query functions - these compute results each time //--------------------------------------------------- Vec3<T> size() const; Vec3<T> center() const; bool intersects (const Vec3<T> &point) const; bool intersects (const Box<Vec3<T> > &box) const; unsigned int majorAxis() const; //---------------- // Classification //---------------- bool isEmpty() const; bool hasVolume() const; bool isInfinite() const; }; //---------------- // Implementation template <class T> inline Box<Vec3<T> >::Box() { makeEmpty(); } template <class T> inline Box<Vec3<T> >::Box (const Vec3<T> &point) { min = point; max = point; } template <class T> inline Box<Vec3<T> >::Box (const Vec3<T> &minT, const Vec3<T> &maxT) { min = minT; max = maxT; } template <class T> inline bool Box<Vec3<T> >::operator == (const Box<Vec3<T> > &src) const { return (min == src.min && max == src.max); } template <class T> inline bool Box<Vec3<T> >::operator != (const Box<Vec3<T> > &src) const { return (min != src.min || max != src.max); } template <class T> inline void Box<Vec3<T> >::makeEmpty() { min = Vec3<T>(Vec3<T>::baseTypeMax()); max = Vec3<T>(Vec3<T>::baseTypeMin()); } template <class T> inline void Box<Vec3<T> >::makeInfinite() { min = Vec3<T>(Vec3<T>::baseTypeMin()); max = Vec3<T>(Vec3<T>::baseTypeMax()); } template <class T> inline void Box<Vec3<T> >::extendBy (const Vec3<T> &point) { if (point[0] < min[0]) min[0] = point[0]; if (point[0] > max[0]) max[0] = point[0]; if (point[1] < min[1]) min[1] = point[1]; if (point[1] > max[1]) max[1] = point[1]; if (point[2] < min[2]) min[2] = point[2]; if (point[2] > max[2]) max[2] = point[2]; } template <class T> inline void Box<Vec3<T> >::extendBy (const Box<Vec3<T> > &box) { if (box.min[0] < min[0]) min[0] = box.min[0]; if (box.max[0] > max[0]) max[0] = box.max[0]; if (box.min[1] < min[1]) min[1] = box.min[1]; if (box.max[1] > max[1]) max[1] = box.max[1]; if (box.min[2] < min[2]) min[2] = box.min[2]; if (box.max[2] > max[2]) max[2] = box.max[2]; } template <class T> inline bool Box<Vec3<T> >::intersects (const Vec3<T> &point) const { if (point[0] < min[0] || point[0] > max[0] || point[1] < min[1] || point[1] > max[1] || point[2] < min[2] || point[2] > max[2]) return false; return true; } template <class T> inline bool Box<Vec3<T> >::intersects (const Box<Vec3<T> > &box) const { if (box.max[0] < min[0] || box.min[0] > max[0] || box.max[1] < min[1] || box.min[1] > max[1] || box.max[2] < min[2] || box.min[2] > max[2]) return false; return true; } template <class T> inline Vec3<T> Box<Vec3<T> >::size() const { if (isEmpty()) return Vec3<T> (0); return max - min; } template <class T> inline Vec3<T> Box<Vec3<T> >::center() const { return (max + min) / 2; } template <class T> inline bool Box<Vec3<T> >::isEmpty() const { if (max[0] < min[0] || max[1] < min[1] || max[2] < min[2]) return true; return false; } template <class T> inline bool Box<Vec3<T> >::isInfinite() const { if (min[0] != limits<T>::min() || max[0] != limits<T>::max() || min[1] != limits<T>::min() || max[1] != limits<T>::max() || min[2] != limits<T>::min() || max[2] != limits<T>::max()) return false; return true; } template <class T> inline bool Box<Vec3<T> >::hasVolume() const { if (max[0] <= min[0] || max[1] <= min[1] || max[2] <= min[2]) return false; return true; } template <class T> inline unsigned int Box<Vec3<T> >::majorAxis() const { unsigned int major = 0; Vec3<T> s = size(); if (s[1] > s[major]) major = 1; if (s[2] > s[major]) major = 2; return major; } IMATH_INTERNAL_NAMESPACE_HEADER_EXIT #endif // INCLUDED_IMATHBOX_H