%PDF- %PDF-
Direktori : /proc/self/root/proc/self/root/proc/self/root/proc/self/root/usr/include/OpenEXR/ |
Current File : //proc/self/root/proc/self/root/proc/self/root/proc/self/root/usr/include/OpenEXR/ImathBoxAlgo.h |
/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHBOXALGO_H #define INCLUDED_IMATHBOXALGO_H //--------------------------------------------------------------------------- // // This file contains algorithms applied to or in conjunction // with bounding boxes (Imath::Box). These algorithms require // more headers to compile. The assumption made is that these // functions are called much less often than the basic box // functions or these functions require more support classes. // // Contains: // // T clip<T>(const T& in, const Box<T>& box) // // Vec3<T> closestPointOnBox(const Vec3<T>&, const Box<Vec3<T>>& ) // // Vec3<T> closestPointInBox(const Vec3<T>&, const Box<Vec3<T>>& ) // // Box< Vec3<S> > transform(const Box<Vec3<S>>&, const Matrix44<T>&) // Box< Vec3<S> > affineTransform(const Box<Vec3<S>>&, const Matrix44<T>&) // // void transform(const Box<Vec3<S>>&, const Matrix44<T>&, Box<V3ec3<S>>&) // void affineTransform(const Box<Vec3<S>>&, // const Matrix44<T>&, // Box<V3ec3<S>>&) // // bool findEntryAndExitPoints(const Line<T> &line, // const Box< Vec3<T> > &box, // Vec3<T> &enterPoint, // Vec3<T> &exitPoint) // // bool intersects(const Box<Vec3<T>> &box, // const Line3<T> &ray, // Vec3<T> intersectionPoint) // // bool intersects(const Box<Vec3<T>> &box, const Line3<T> &ray) // //--------------------------------------------------------------------------- #include "ImathBox.h" #include "ImathMatrix.h" #include "ImathLineAlgo.h" #include "ImathPlane.h" #include "ImathNamespace.h" IMATH_INTERNAL_NAMESPACE_HEADER_ENTER template <class T> inline T clip (const T &p, const Box<T> &box) { // // Clip the coordinates of a point, p, against a box. // The result, q, is the closest point to p that is inside the box. // T q; for (int i = 0; i < int (box.min.dimensions()); i++) { if (p[i] < box.min[i]) q[i] = box.min[i]; else if (p[i] > box.max[i]) q[i] = box.max[i]; else q[i] = p[i]; } return q; } template <class T> inline T closestPointInBox (const T &p, const Box<T> &box) { return clip (p, box); } template <class T> Vec3<T> closestPointOnBox (const Vec3<T> &p, const Box< Vec3<T> > &box) { // // Find the point, q, on the surface of // the box, that is closest to point p. // // If the box is empty, return p. // if (box.isEmpty()) return p; Vec3<T> q = closestPointInBox (p, box); if (q == p) { Vec3<T> d1 = p - box.min; Vec3<T> d2 = box.max - p; Vec3<T> d ((d1.x < d2.x)? d1.x: d2.x, (d1.y < d2.y)? d1.y: d2.y, (d1.z < d2.z)? d1.z: d2.z); if (d.x < d.y && d.x < d.z) { q.x = (d1.x < d2.x)? box.min.x: box.max.x; } else if (d.y < d.z) { q.y = (d1.y < d2.y)? box.min.y: box.max.y; } else { q.z = (d1.z < d2.z)? box.min.z: box.max.z; } } return q; } template <class S, class T> Box< Vec3<S> > transform (const Box< Vec3<S> > &box, const Matrix44<T> &m) { // // Transform a 3D box by a matrix, and compute a new box that // tightly encloses the transformed box. // // If m is an affine transform, then we use James Arvo's fast // method as described in "Graphics Gems", Academic Press, 1990, // pp. 548-550. // // // A transformed empty box is still empty, and a transformed infinite box // is still infinite // if (box.isEmpty() || box.isInfinite()) return box; // // If the last column of m is (0 0 0 1) then m is an affine // transform, and we use the fast Graphics Gems trick. // if (m[0][3] == 0 && m[1][3] == 0 && m[2][3] == 0 && m[3][3] == 1) { Box< Vec3<S> > newBox; for (int i = 0; i < 3; i++) { newBox.min[i] = newBox.max[i] = (S) m[3][i]; for (int j = 0; j < 3; j++) { S a, b; a = (S) m[j][i] * box.min[j]; b = (S) m[j][i] * box.max[j]; if (a < b) { newBox.min[i] += a; newBox.max[i] += b; } else { newBox.min[i] += b; newBox.max[i] += a; } } } return newBox; } // // M is a projection matrix. Do things the naive way: // Transform the eight corners of the box, and find an // axis-parallel box that encloses the transformed corners. // Vec3<S> points[8]; points[0][0] = points[1][0] = points[2][0] = points[3][0] = box.min[0]; points[4][0] = points[5][0] = points[6][0] = points[7][0] = box.max[0]; points[0][1] = points[1][1] = points[4][1] = points[5][1] = box.min[1]; points[2][1] = points[3][1] = points[6][1] = points[7][1] = box.max[1]; points[0][2] = points[2][2] = points[4][2] = points[6][2] = box.min[2]; points[1][2] = points[3][2] = points[5][2] = points[7][2] = box.max[2]; Box< Vec3<S> > newBox; for (int i = 0; i < 8; i++) newBox.extendBy (points[i] * m); return newBox; } template <class S, class T> void transform (const Box< Vec3<S> > &box, const Matrix44<T> &m, Box< Vec3<S> > &result) { // // Transform a 3D box by a matrix, and compute a new box that // tightly encloses the transformed box. // // If m is an affine transform, then we use James Arvo's fast // method as described in "Graphics Gems", Academic Press, 1990, // pp. 548-550. // // // A transformed empty box is still empty, and a transformed infinite // box is still infinite // if (box.isEmpty() || box.isInfinite()) { return; } // // If the last column of m is (0 0 0 1) then m is an affine // transform, and we use the fast Graphics Gems trick. // if (m[0][3] == 0 && m[1][3] == 0 && m[2][3] == 0 && m[3][3] == 1) { for (int i = 0; i < 3; i++) { result.min[i] = result.max[i] = (S) m[3][i]; for (int j = 0; j < 3; j++) { S a, b; a = (S) m[j][i] * box.min[j]; b = (S) m[j][i] * box.max[j]; if (a < b) { result.min[i] += a; result.max[i] += b; } else { result.min[i] += b; result.max[i] += a; } } } return; } // // M is a projection matrix. Do things the naive way: // Transform the eight corners of the box, and find an // axis-parallel box that encloses the transformed corners. // Vec3<S> points[8]; points[0][0] = points[1][0] = points[2][0] = points[3][0] = box.min[0]; points[4][0] = points[5][0] = points[6][0] = points[7][0] = box.max[0]; points[0][1] = points[1][1] = points[4][1] = points[5][1] = box.min[1]; points[2][1] = points[3][1] = points[6][1] = points[7][1] = box.max[1]; points[0][2] = points[2][2] = points[4][2] = points[6][2] = box.min[2]; points[1][2] = points[3][2] = points[5][2] = points[7][2] = box.max[2]; for (int i = 0; i < 8; i++) result.extendBy (points[i] * m); } template <class S, class T> Box< Vec3<S> > affineTransform (const Box< Vec3<S> > &box, const Matrix44<T> &m) { // // Transform a 3D box by a matrix whose rightmost column // is (0 0 0 1), and compute a new box that tightly encloses // the transformed box. // // As in the transform() function, above, we use James Arvo's // fast method. // if (box.isEmpty() || box.isInfinite()) { // // A transformed empty or infinite box is still empty or infinite // return box; } Box< Vec3<S> > newBox; for (int i = 0; i < 3; i++) { newBox.min[i] = newBox.max[i] = (S) m[3][i]; for (int j = 0; j < 3; j++) { S a, b; a = (S) m[j][i] * box.min[j]; b = (S) m[j][i] * box.max[j]; if (a < b) { newBox.min[i] += a; newBox.max[i] += b; } else { newBox.min[i] += b; newBox.max[i] += a; } } } return newBox; } template <class S, class T> void affineTransform (const Box< Vec3<S> > &box, const Matrix44<T> &m, Box<Vec3<S> > &result) { // // Transform a 3D box by a matrix whose rightmost column // is (0 0 0 1), and compute a new box that tightly encloses // the transformed box. // // As in the transform() function, above, we use James Arvo's // fast method. // if (box.isEmpty()) { // // A transformed empty box is still empty // result.makeEmpty(); return; } if (box.isInfinite()) { // // A transformed infinite box is still infinite // result.makeInfinite(); return; } for (int i = 0; i < 3; i++) { result.min[i] = result.max[i] = (S) m[3][i]; for (int j = 0; j < 3; j++) { S a, b; a = (S) m[j][i] * box.min[j]; b = (S) m[j][i] * box.max[j]; if (a < b) { result.min[i] += a; result.max[i] += b; } else { result.min[i] += b; result.max[i] += a; } } } } template <class T> bool findEntryAndExitPoints (const Line3<T> &r, const Box<Vec3<T> > &b, Vec3<T> &entry, Vec3<T> &exit) { // // Compute the points where a ray, r, enters and exits a box, b: // // findEntryAndExitPoints() returns // // - true if the ray starts inside the box or if the // ray starts outside and intersects the box // // - false otherwise (that is, if the ray does not // intersect the box) // // The entry and exit points are // // - points on two of the faces of the box when // findEntryAndExitPoints() returns true // (The entry end exit points may be on either // side of the ray's origin) // // - undefined when findEntryAndExitPoints() // returns false // if (b.isEmpty()) { // // No ray intersects an empty box // return false; } // // The following description assumes that the ray's origin is outside // the box, but the code below works even if the origin is inside the // box: // // Between one and three "frontfacing" sides of the box are oriented // towards the ray's origin, and between one and three "backfacing" // sides are oriented away from the ray's origin. // We intersect the ray with the planes that contain the sides of the // box, and compare the distances between the ray's origin and the // ray-plane intersections. The ray intersects the box if the most // distant frontfacing intersection is nearer than the nearest // backfacing intersection. If the ray does intersect the box, then // the most distant frontfacing ray-plane intersection is the entry // point and the nearest backfacing ray-plane intersection is the // exit point. // const T TMAX = limits<T>::max(); T tFrontMax = -TMAX; T tBackMin = TMAX; // // Minimum and maximum X sides. // if (r.dir.x >= 0) { T d1 = b.max.x - r.pos.x; T d2 = b.min.x - r.pos.x; if (r.dir.x > 1 || (abs (d1) < TMAX * r.dir.x && abs (d2) < TMAX * r.dir.x)) { T t1 = d1 / r.dir.x; T t2 = d2 / r.dir.x; if (tBackMin > t1) { tBackMin = t1; exit.x = b.max.x; exit.y = clamp (r.pos.y + t1 * r.dir.y, b.min.y, b.max.y); exit.z = clamp (r.pos.z + t1 * r.dir.z, b.min.z, b.max.z); } if (tFrontMax < t2) { tFrontMax = t2; entry.x = b.min.x; entry.y = clamp (r.pos.y + t2 * r.dir.y, b.min.y, b.max.y); entry.z = clamp (r.pos.z + t2 * r.dir.z, b.min.z, b.max.z); } } else if (r.pos.x < b.min.x || r.pos.x > b.max.x) { return false; } } else // r.dir.x < 0 { T d1 = b.min.x - r.pos.x; T d2 = b.max.x - r.pos.x; if (r.dir.x < -1 || (abs (d1) < -TMAX * r.dir.x && abs (d2) < -TMAX * r.dir.x)) { T t1 = d1 / r.dir.x; T t2 = d2 / r.dir.x; if (tBackMin > t1) { tBackMin = t1; exit.x = b.min.x; exit.y = clamp (r.pos.y + t1 * r.dir.y, b.min.y, b.max.y); exit.z = clamp (r.pos.z + t1 * r.dir.z, b.min.z, b.max.z); } if (tFrontMax < t2) { tFrontMax = t2; entry.x = b.max.x; entry.y = clamp (r.pos.y + t2 * r.dir.y, b.min.y, b.max.y); entry.z = clamp (r.pos.z + t2 * r.dir.z, b.min.z, b.max.z); } } else if (r.pos.x < b.min.x || r.pos.x > b.max.x) { return false; } } // // Minimum and maximum Y sides. // if (r.dir.y >= 0) { T d1 = b.max.y - r.pos.y; T d2 = b.min.y - r.pos.y; if (r.dir.y > 1 || (abs (d1) < TMAX * r.dir.y && abs (d2) < TMAX * r.dir.y)) { T t1 = d1 / r.dir.y; T t2 = d2 / r.dir.y; if (tBackMin > t1) { tBackMin = t1; exit.x = clamp (r.pos.x + t1 * r.dir.x, b.min.x, b.max.x); exit.y = b.max.y; exit.z = clamp (r.pos.z + t1 * r.dir.z, b.min.z, b.max.z); } if (tFrontMax < t2) { tFrontMax = t2; entry.x = clamp (r.pos.x + t2 * r.dir.x, b.min.x, b.max.x); entry.y = b.min.y; entry.z = clamp (r.pos.z + t2 * r.dir.z, b.min.z, b.max.z); } } else if (r.pos.y < b.min.y || r.pos.y > b.max.y) { return false; } } else // r.dir.y < 0 { T d1 = b.min.y - r.pos.y; T d2 = b.max.y - r.pos.y; if (r.dir.y < -1 || (abs (d1) < -TMAX * r.dir.y && abs (d2) < -TMAX * r.dir.y)) { T t1 = d1 / r.dir.y; T t2 = d2 / r.dir.y; if (tBackMin > t1) { tBackMin = t1; exit.x = clamp (r.pos.x + t1 * r.dir.x, b.min.x, b.max.x); exit.y = b.min.y; exit.z = clamp (r.pos.z + t1 * r.dir.z, b.min.z, b.max.z); } if (tFrontMax < t2) { tFrontMax = t2; entry.x = clamp (r.pos.x + t2 * r.dir.x, b.min.x, b.max.x); entry.y = b.max.y; entry.z = clamp (r.pos.z + t2 * r.dir.z, b.min.z, b.max.z); } } else if (r.pos.y < b.min.y || r.pos.y > b.max.y) { return false; } } // // Minimum and maximum Z sides. // if (r.dir.z >= 0) { T d1 = b.max.z - r.pos.z; T d2 = b.min.z - r.pos.z; if (r.dir.z > 1 || (abs (d1) < TMAX * r.dir.z && abs (d2) < TMAX * r.dir.z)) { T t1 = d1 / r.dir.z; T t2 = d2 / r.dir.z; if (tBackMin > t1) { tBackMin = t1; exit.x = clamp (r.pos.x + t1 * r.dir.x, b.min.x, b.max.x); exit.y = clamp (r.pos.y + t1 * r.dir.y, b.min.y, b.max.y); exit.z = b.max.z; } if (tFrontMax < t2) { tFrontMax = t2; entry.x = clamp (r.pos.x + t2 * r.dir.x, b.min.x, b.max.x); entry.y = clamp (r.pos.y + t2 * r.dir.y, b.min.y, b.max.y); entry.z = b.min.z; } } else if (r.pos.z < b.min.z || r.pos.z > b.max.z) { return false; } } else // r.dir.z < 0 { T d1 = b.min.z - r.pos.z; T d2 = b.max.z - r.pos.z; if (r.dir.z < -1 || (abs (d1) < -TMAX * r.dir.z && abs (d2) < -TMAX * r.dir.z)) { T t1 = d1 / r.dir.z; T t2 = d2 / r.dir.z; if (tBackMin > t1) { tBackMin = t1; exit.x = clamp (r.pos.x + t1 * r.dir.x, b.min.x, b.max.x); exit.y = clamp (r.pos.y + t1 * r.dir.y, b.min.y, b.max.y); exit.z = b.min.z; } if (tFrontMax < t2) { tFrontMax = t2; entry.x = clamp (r.pos.x + t2 * r.dir.x, b.min.x, b.max.x); entry.y = clamp (r.pos.y + t2 * r.dir.y, b.min.y, b.max.y); entry.z = b.max.z; } } else if (r.pos.z < b.min.z || r.pos.z > b.max.z) { return false; } } return tFrontMax <= tBackMin; } template<class T> bool intersects (const Box< Vec3<T> > &b, const Line3<T> &r, Vec3<T> &ip) { // // Intersect a ray, r, with a box, b, and compute the intersection // point, ip: // // intersect() returns // // - true if the ray starts inside the box or if the // ray starts outside and intersects the box // // - false if the ray starts outside the box and intersects it, // but the intersection is behind the ray's origin. // // - false if the ray starts outside and does not intersect it // // The intersection point is // // - the ray's origin if the ray starts inside the box // // - a point on one of the faces of the box if the ray // starts outside the box // // - undefined when intersect() returns false // if (b.isEmpty()) { // // No ray intersects an empty box // return false; } if (b.intersects (r.pos)) { // // The ray starts inside the box // ip = r.pos; return true; } // // The ray starts outside the box. Between one and three "frontfacing" // sides of the box are oriented towards the ray, and between one and // three "backfacing" sides are oriented away from the ray. // We intersect the ray with the planes that contain the sides of the // box, and compare the distances between ray's origin and the ray-plane // intersections. // The ray intersects the box if the most distant frontfacing intersection // is nearer than the nearest backfacing intersection. If the ray does // intersect the box, then the most distant frontfacing ray-plane // intersection is the ray-box intersection. // const T TMAX = limits<T>::max(); T tFrontMax = -1; T tBackMin = TMAX; // // Minimum and maximum X sides. // if (r.dir.x > 0) { if (r.pos.x > b.max.x) return false; T d = b.max.x - r.pos.x; if (r.dir.x > 1 || d < TMAX * r.dir.x) { T t = d / r.dir.x; if (tBackMin > t) tBackMin = t; } if (r.pos.x <= b.min.x) { T d = b.min.x - r.pos.x; T t = (r.dir.x > 1 || d < TMAX * r.dir.x)? d / r.dir.x: TMAX; if (tFrontMax < t) { tFrontMax = t; ip.x = b.min.x; ip.y = clamp (r.pos.y + t * r.dir.y, b.min.y, b.max.y); ip.z = clamp (r.pos.z + t * r.dir.z, b.min.z, b.max.z); } } } else if (r.dir.x < 0) { if (r.pos.x < b.min.x) return false; T d = b.min.x - r.pos.x; if (r.dir.x < -1 || d > TMAX * r.dir.x) { T t = d / r.dir.x; if (tBackMin > t) tBackMin = t; } if (r.pos.x >= b.max.x) { T d = b.max.x - r.pos.x; T t = (r.dir.x < -1 || d > TMAX * r.dir.x)? d / r.dir.x: TMAX; if (tFrontMax < t) { tFrontMax = t; ip.x = b.max.x; ip.y = clamp (r.pos.y + t * r.dir.y, b.min.y, b.max.y); ip.z = clamp (r.pos.z + t * r.dir.z, b.min.z, b.max.z); } } } else // r.dir.x == 0 { if (r.pos.x < b.min.x || r.pos.x > b.max.x) return false; } // // Minimum and maximum Y sides. // if (r.dir.y > 0) { if (r.pos.y > b.max.y) return false; T d = b.max.y - r.pos.y; if (r.dir.y > 1 || d < TMAX * r.dir.y) { T t = d / r.dir.y; if (tBackMin > t) tBackMin = t; } if (r.pos.y <= b.min.y) { T d = b.min.y - r.pos.y; T t = (r.dir.y > 1 || d < TMAX * r.dir.y)? d / r.dir.y: TMAX; if (tFrontMax < t) { tFrontMax = t; ip.x = clamp (r.pos.x + t * r.dir.x, b.min.x, b.max.x); ip.y = b.min.y; ip.z = clamp (r.pos.z + t * r.dir.z, b.min.z, b.max.z); } } } else if (r.dir.y < 0) { if (r.pos.y < b.min.y) return false; T d = b.min.y - r.pos.y; if (r.dir.y < -1 || d > TMAX * r.dir.y) { T t = d / r.dir.y; if (tBackMin > t) tBackMin = t; } if (r.pos.y >= b.max.y) { T d = b.max.y - r.pos.y; T t = (r.dir.y < -1 || d > TMAX * r.dir.y)? d / r.dir.y: TMAX; if (tFrontMax < t) { tFrontMax = t; ip.x = clamp (r.pos.x + t * r.dir.x, b.min.x, b.max.x); ip.y = b.max.y; ip.z = clamp (r.pos.z + t * r.dir.z, b.min.z, b.max.z); } } } else // r.dir.y == 0 { if (r.pos.y < b.min.y || r.pos.y > b.max.y) return false; } // // Minimum and maximum Z sides. // if (r.dir.z > 0) { if (r.pos.z > b.max.z) return false; T d = b.max.z - r.pos.z; if (r.dir.z > 1 || d < TMAX * r.dir.z) { T t = d / r.dir.z; if (tBackMin > t) tBackMin = t; } if (r.pos.z <= b.min.z) { T d = b.min.z - r.pos.z; T t = (r.dir.z > 1 || d < TMAX * r.dir.z)? d / r.dir.z: TMAX; if (tFrontMax < t) { tFrontMax = t; ip.x = clamp (r.pos.x + t * r.dir.x, b.min.x, b.max.x); ip.y = clamp (r.pos.y + t * r.dir.y, b.min.y, b.max.y); ip.z = b.min.z; } } } else if (r.dir.z < 0) { if (r.pos.z < b.min.z) return false; T d = b.min.z - r.pos.z; if (r.dir.z < -1 || d > TMAX * r.dir.z) { T t = d / r.dir.z; if (tBackMin > t) tBackMin = t; } if (r.pos.z >= b.max.z) { T d = b.max.z - r.pos.z; T t = (r.dir.z < -1 || d > TMAX * r.dir.z)? d / r.dir.z: TMAX; if (tFrontMax < t) { tFrontMax = t; ip.x = clamp (r.pos.x + t * r.dir.x, b.min.x, b.max.x); ip.y = clamp (r.pos.y + t * r.dir.y, b.min.y, b.max.y); ip.z = b.max.z; } } } else // r.dir.z == 0 { if (r.pos.z < b.min.z || r.pos.z > b.max.z) return false; } return tFrontMax <= tBackMin; } template<class T> bool intersects (const Box< Vec3<T> > &box, const Line3<T> &ray) { Vec3<T> ignored; return intersects (box, ray, ignored); } IMATH_INTERNAL_NAMESPACE_HEADER_EXIT #endif // INCLUDED_IMATHBOXALGO_H