%PDF- %PDF-
Direktori : /proc/self/root/proc/self/root/proc/self/root/proc/self/root/usr/include/OpenEXR/ |
Current File : //proc/self/root/proc/self/root/proc/self/root/proc/self/root/usr/include/OpenEXR/ImathEuler.h |
/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHEULER_H #define INCLUDED_IMATHEULER_H //---------------------------------------------------------------------- // // template class Euler<T> // // This class represents euler angle orientations. The class // inherits from Vec3 to it can be freely cast. The additional // information is the euler priorities rep. This class is // essentially a rip off of Ken Shoemake's GemsIV code. It has // been modified minimally to make it more understandable, but // hardly enough to make it easy to grok completely. // // There are 24 possible combonations of Euler angle // representations of which 12 are common in CG and you will // probably only use 6 of these which in this scheme are the // non-relative-non-repeating types. // // The representations can be partitioned according to two // criteria: // // 1) Are the angles measured relative to a set of fixed axis // or relative to each other (the latter being what happens // when rotation matrices are multiplied together and is // almost ubiquitous in the cg community) // // 2) Is one of the rotations repeated (ala XYX rotation) // // When you construct a given representation from scratch you // must order the angles according to their priorities. So, the // easiest is a softimage or aerospace (yaw/pitch/roll) ordering // of ZYX. // // float x_rot = 1; // float y_rot = 2; // float z_rot = 3; // // Eulerf angles(z_rot, y_rot, x_rot, Eulerf::ZYX); // -or- // Eulerf angles( V3f(z_rot,y_rot,z_rot), Eulerf::ZYX ); // // If instead, the order was YXZ for instance you would have to // do this: // // float x_rot = 1; // float y_rot = 2; // float z_rot = 3; // // Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ); // -or- // Eulerf angles( V3f(y_rot,x_rot,z_rot), Eulerf::YXZ ); // // Notice how the order you put the angles into the three slots // should correspond to the enum (YXZ) ordering. The input angle // vector is called the "ijk" vector -- not an "xyz" vector. The // ijk vector order is the same as the enum. If you treat the // Euler<> as a Vec<> (which it inherts from) you will find the // angles are ordered in the same way, i.e.: // // V3f v = angles; // // v.x == y_rot, v.y == x_rot, v.z == z_rot // // If you just want the x, y, and z angles stored in a vector in // that order, you can do this: // // V3f v = angles.toXYZVector() // // v.x == x_rot, v.y == y_rot, v.z == z_rot // // If you want to set the Euler with an XYZVector use the // optional layout argument: // // Eulerf angles(x_rot, y_rot, z_rot, // Eulerf::YXZ, // Eulerf::XYZLayout); // // This is the same as: // // Eulerf angles(y_rot, x_rot, z_rot, Eulerf::YXZ); // // Note that this won't do anything intelligent if you have a // repeated axis in the euler angles (e.g. XYX) // // If you need to use the "relative" versions of these, you will // need to use the "r" enums. // // The units of the rotation angles are assumed to be radians. // //---------------------------------------------------------------------- #include "ImathMath.h" #include "ImathVec.h" #include "ImathQuat.h" #include "ImathMatrix.h" #include "ImathLimits.h" #include "ImathNamespace.h" #include <iostream> IMATH_INTERNAL_NAMESPACE_HEADER_ENTER #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER // Disable MS VC++ warnings about conversion from double to float #pragma warning(disable:4244) #endif template <class T> class Euler : public Vec3<T> { public: using Vec3<T>::x; using Vec3<T>::y; using Vec3<T>::z; enum Order { // // All 24 possible orderings // XYZ = 0x0101, // "usual" orderings XZY = 0x0001, YZX = 0x1101, YXZ = 0x1001, ZXY = 0x2101, ZYX = 0x2001, XZX = 0x0011, // first axis repeated XYX = 0x0111, YXY = 0x1011, YZY = 0x1111, ZYZ = 0x2011, ZXZ = 0x2111, XYZr = 0x2000, // relative orderings -- not common XZYr = 0x2100, YZXr = 0x1000, YXZr = 0x1100, ZXYr = 0x0000, ZYXr = 0x0100, XZXr = 0x2110, // relative first axis repeated XYXr = 0x2010, YXYr = 0x1110, YZYr = 0x1010, ZYZr = 0x0110, ZXZr = 0x0010, // |||| // VVVV // Legend: ABCD // A -> Initial Axis (0==x, 1==y, 2==z) // B -> Parity Even (1==true) // C -> Initial Repeated (1==true) // D -> Frame Static (1==true) // Legal = XYZ | XZY | YZX | YXZ | ZXY | ZYX | XZX | XYX | YXY | YZY | ZYZ | ZXZ | XYZr| XZYr| YZXr| YXZr| ZXYr| ZYXr| XZXr| XYXr| YXYr| YZYr| ZYZr| ZXZr, Min = 0x0000, Max = 0x2111, Default = XYZ }; enum Axis { X = 0, Y = 1, Z = 2 }; enum InputLayout { XYZLayout, IJKLayout }; //-------------------------------------------------------------------- // Constructors -- all default to ZYX non-relative ala softimage // (where there is no argument to specify it) // // The Euler-from-matrix constructors assume that the matrix does // not include shear or non-uniform scaling, but the constructors // do not examine the matrix to verify this assumption. If necessary, // you can adjust the matrix by calling the removeScalingAndShear() // function, defined in ImathMatrixAlgo.h. //-------------------------------------------------------------------- Euler(); Euler(const Euler&); Euler(Order p); Euler(const Vec3<T> &v, Order o = Default, InputLayout l = IJKLayout); Euler(T i, T j, T k, Order o = Default, InputLayout l = IJKLayout); Euler(const Euler<T> &euler, Order newp); Euler(const Matrix33<T> &, Order o = Default); Euler(const Matrix44<T> &, Order o = Default); //--------------------------------- // Algebraic functions/ Operators //--------------------------------- const Euler<T>& operator= (const Euler<T>&); const Euler<T>& operator= (const Vec3<T>&); //-------------------------------------------------------- // Set the euler value // This does NOT convert the angles, but setXYZVector() // does reorder the input vector. //-------------------------------------------------------- static bool legal(Order); void setXYZVector(const Vec3<T> &); Order order() const; void setOrder(Order); void set(Axis initial, bool relative, bool parityEven, bool firstRepeats); //------------------------------------------------------------ // Conversions, toXYZVector() reorders the angles so that // the X rotation comes first, followed by the Y and Z // in cases like XYX ordering, the repeated angle will be // in the "z" component // // The Euler-from-matrix extract() functions assume that the // matrix does not include shear or non-uniform scaling, but // the extract() functions do not examine the matrix to verify // this assumption. If necessary, you can adjust the matrix // by calling the removeScalingAndShear() function, defined // in ImathMatrixAlgo.h. //------------------------------------------------------------ void extract(const Matrix33<T>&); void extract(const Matrix44<T>&); void extract(const Quat<T>&); Matrix33<T> toMatrix33() const; Matrix44<T> toMatrix44() const; Quat<T> toQuat() const; Vec3<T> toXYZVector() const; //--------------------------------------------------- // Use this function to unpack angles from ijk form //--------------------------------------------------- void angleOrder(int &i, int &j, int &k) const; //--------------------------------------------------- // Use this function to determine mapping from xyz to ijk // - reshuffles the xyz to match the order //--------------------------------------------------- void angleMapping(int &i, int &j, int &k) const; //---------------------------------------------------------------------- // // Utility methods for getting continuous rotations. None of these // methods change the orientation given by its inputs (or at least // that is the intent). // // angleMod() converts an angle to its equivalent in [-PI, PI] // // simpleXYZRotation() adjusts xyzRot so that its components differ // from targetXyzRot by no more than +-PI // // nearestRotation() adjusts xyzRot so that its components differ // from targetXyzRot by as little as possible. // Note that xyz here really means ijk, because // the order must be provided. // // makeNear() adjusts "this" Euler so that its components differ // from target by as little as possible. This method // might not make sense for Eulers with different order // and it probably doesn't work for repeated axis and // relative orderings (TODO). // //----------------------------------------------------------------------- static float angleMod (T angle); static void simpleXYZRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot); static void nearestRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot, Order order = XYZ); void makeNear (const Euler<T> &target); bool frameStatic() const { return _frameStatic; } bool initialRepeated() const { return _initialRepeated; } bool parityEven() const { return _parityEven; } Axis initialAxis() const { return _initialAxis; } protected: bool _frameStatic : 1; // relative or static rotations bool _initialRepeated : 1; // init axis repeated as last bool _parityEven : 1; // "parity of axis permutation" #if defined _WIN32 || defined _WIN64 Axis _initialAxis ; // First axis of rotation #else Axis _initialAxis : 2; // First axis of rotation #endif }; //-------------------- // Convenient typedefs //-------------------- typedef Euler<float> Eulerf; typedef Euler<double> Eulerd; //--------------- // Implementation //--------------- template<class T> inline void Euler<T>::angleOrder(int &i, int &j, int &k) const { i = _initialAxis; j = _parityEven ? (i+1)%3 : (i > 0 ? i-1 : 2); k = _parityEven ? (i > 0 ? i-1 : 2) : (i+1)%3; } template<class T> inline void Euler<T>::angleMapping(int &i, int &j, int &k) const { int m[3]; m[_initialAxis] = 0; m[(_initialAxis+1) % 3] = _parityEven ? 1 : 2; m[(_initialAxis+2) % 3] = _parityEven ? 2 : 1; i = m[0]; j = m[1]; k = m[2]; } template<class T> inline void Euler<T>::setXYZVector(const Vec3<T> &v) { int i,j,k; angleMapping(i,j,k); (*this)[i] = v.x; (*this)[j] = v.y; (*this)[k] = v.z; } template<class T> inline Vec3<T> Euler<T>::toXYZVector() const { int i,j,k; angleMapping(i,j,k); return Vec3<T>((*this)[i],(*this)[j],(*this)[k]); } template<class T> Euler<T>::Euler() : Vec3<T>(0,0,0), _frameStatic(true), _initialRepeated(false), _parityEven(true), _initialAxis(X) {} template<class T> Euler<T>::Euler(typename Euler<T>::Order p) : Vec3<T>(0,0,0), _frameStatic(true), _initialRepeated(false), _parityEven(true), _initialAxis(X) { setOrder(p); } template<class T> inline Euler<T>::Euler( const Vec3<T> &v, typename Euler<T>::Order p, typename Euler<T>::InputLayout l ) { setOrder(p); if ( l == XYZLayout ) setXYZVector(v); else { x = v.x; y = v.y; z = v.z; } } template<class T> inline Euler<T>::Euler(const Euler<T> &euler) { operator=(euler); } template<class T> inline Euler<T>::Euler(const Euler<T> &euler,Order p) { setOrder(p); Matrix33<T> M = euler.toMatrix33(); extract(M); } template<class T> inline Euler<T>::Euler( T xi, T yi, T zi, typename Euler<T>::Order p, typename Euler<T>::InputLayout l) { setOrder(p); if ( l == XYZLayout ) setXYZVector(Vec3<T>(xi,yi,zi)); else { x = xi; y = yi; z = zi; } } template<class T> inline Euler<T>::Euler( const Matrix33<T> &M, typename Euler::Order p ) { setOrder(p); extract(M); } template<class T> inline Euler<T>::Euler( const Matrix44<T> &M, typename Euler::Order p ) { setOrder(p); extract(M); } template<class T> inline void Euler<T>::extract(const Quat<T> &q) { extract(q.toMatrix33()); } template<class T> void Euler<T>::extract(const Matrix33<T> &M) { int i,j,k; angleOrder(i,j,k); if (_initialRepeated) { // // Extract the first angle, x. // x = Math<T>::atan2 (M[j][i], M[k][i]); // // Remove the x rotation from M, so that the remaining // rotation, N, is only around two axes, and gimbal lock // cannot occur. // Vec3<T> r (0, 0, 0); r[i] = (_parityEven? -x: x); Matrix44<T> N; N.rotate (r); N = N * Matrix44<T> (M[0][0], M[0][1], M[0][2], 0, M[1][0], M[1][1], M[1][2], 0, M[2][0], M[2][1], M[2][2], 0, 0, 0, 0, 1); // // Extract the other two angles, y and z, from N. // T sy = Math<T>::sqrt (N[j][i]*N[j][i] + N[k][i]*N[k][i]); y = Math<T>::atan2 (sy, N[i][i]); z = Math<T>::atan2 (N[j][k], N[j][j]); } else { // // Extract the first angle, x. // x = Math<T>::atan2 (M[j][k], M[k][k]); // // Remove the x rotation from M, so that the remaining // rotation, N, is only around two axes, and gimbal lock // cannot occur. // Vec3<T> r (0, 0, 0); r[i] = (_parityEven? -x: x); Matrix44<T> N; N.rotate (r); N = N * Matrix44<T> (M[0][0], M[0][1], M[0][2], 0, M[1][0], M[1][1], M[1][2], 0, M[2][0], M[2][1], M[2][2], 0, 0, 0, 0, 1); // // Extract the other two angles, y and z, from N. // T cy = Math<T>::sqrt (N[i][i]*N[i][i] + N[i][j]*N[i][j]); y = Math<T>::atan2 (-N[i][k], cy); z = Math<T>::atan2 (-N[j][i], N[j][j]); } if (!_parityEven) *this *= -1; if (!_frameStatic) { T t = x; x = z; z = t; } } template<class T> void Euler<T>::extract(const Matrix44<T> &M) { int i,j,k; angleOrder(i,j,k); if (_initialRepeated) { // // Extract the first angle, x. // x = Math<T>::atan2 (M[j][i], M[k][i]); // // Remove the x rotation from M, so that the remaining // rotation, N, is only around two axes, and gimbal lock // cannot occur. // Vec3<T> r (0, 0, 0); r[i] = (_parityEven? -x: x); Matrix44<T> N; N.rotate (r); N = N * M; // // Extract the other two angles, y and z, from N. // T sy = Math<T>::sqrt (N[j][i]*N[j][i] + N[k][i]*N[k][i]); y = Math<T>::atan2 (sy, N[i][i]); z = Math<T>::atan2 (N[j][k], N[j][j]); } else { // // Extract the first angle, x. // x = Math<T>::atan2 (M[j][k], M[k][k]); // // Remove the x rotation from M, so that the remaining // rotation, N, is only around two axes, and gimbal lock // cannot occur. // Vec3<T> r (0, 0, 0); r[i] = (_parityEven? -x: x); Matrix44<T> N; N.rotate (r); N = N * M; // // Extract the other two angles, y and z, from N. // T cy = Math<T>::sqrt (N[i][i]*N[i][i] + N[i][j]*N[i][j]); y = Math<T>::atan2 (-N[i][k], cy); z = Math<T>::atan2 (-N[j][i], N[j][j]); } if (!_parityEven) *this *= -1; if (!_frameStatic) { T t = x; x = z; z = t; } } template<class T> Matrix33<T> Euler<T>::toMatrix33() const { int i,j,k; angleOrder(i,j,k); Vec3<T> angles; if ( _frameStatic ) angles = (*this); else angles = Vec3<T>(z,y,x); if ( !_parityEven ) angles *= -1.0; T ci = Math<T>::cos(angles.x); T cj = Math<T>::cos(angles.y); T ch = Math<T>::cos(angles.z); T si = Math<T>::sin(angles.x); T sj = Math<T>::sin(angles.y); T sh = Math<T>::sin(angles.z); T cc = ci*ch; T cs = ci*sh; T sc = si*ch; T ss = si*sh; Matrix33<T> M; if ( _initialRepeated ) { M[i][i] = cj; M[j][i] = sj*si; M[k][i] = sj*ci; M[i][j] = sj*sh; M[j][j] = -cj*ss+cc; M[k][j] = -cj*cs-sc; M[i][k] = -sj*ch; M[j][k] = cj*sc+cs; M[k][k] = cj*cc-ss; } else { M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss; M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc; M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci; } return M; } template<class T> Matrix44<T> Euler<T>::toMatrix44() const { int i,j,k; angleOrder(i,j,k); Vec3<T> angles; if ( _frameStatic ) angles = (*this); else angles = Vec3<T>(z,y,x); if ( !_parityEven ) angles *= -1.0; T ci = Math<T>::cos(angles.x); T cj = Math<T>::cos(angles.y); T ch = Math<T>::cos(angles.z); T si = Math<T>::sin(angles.x); T sj = Math<T>::sin(angles.y); T sh = Math<T>::sin(angles.z); T cc = ci*ch; T cs = ci*sh; T sc = si*ch; T ss = si*sh; Matrix44<T> M; if ( _initialRepeated ) { M[i][i] = cj; M[j][i] = sj*si; M[k][i] = sj*ci; M[i][j] = sj*sh; M[j][j] = -cj*ss+cc; M[k][j] = -cj*cs-sc; M[i][k] = -sj*ch; M[j][k] = cj*sc+cs; M[k][k] = cj*cc-ss; } else { M[i][i] = cj*ch; M[j][i] = sj*sc-cs; M[k][i] = sj*cc+ss; M[i][j] = cj*sh; M[j][j] = sj*ss+cc; M[k][j] = sj*cs-sc; M[i][k] = -sj; M[j][k] = cj*si; M[k][k] = cj*ci; } return M; } template<class T> Quat<T> Euler<T>::toQuat() const { Vec3<T> angles; int i,j,k; angleOrder(i,j,k); if ( _frameStatic ) angles = (*this); else angles = Vec3<T>(z,y,x); if ( !_parityEven ) angles.y = -angles.y; T ti = angles.x*0.5; T tj = angles.y*0.5; T th = angles.z*0.5; T ci = Math<T>::cos(ti); T cj = Math<T>::cos(tj); T ch = Math<T>::cos(th); T si = Math<T>::sin(ti); T sj = Math<T>::sin(tj); T sh = Math<T>::sin(th); T cc = ci*ch; T cs = ci*sh; T sc = si*ch; T ss = si*sh; T parity = _parityEven ? 1.0 : -1.0; Quat<T> q; Vec3<T> a; if ( _initialRepeated ) { a[i] = cj*(cs + sc); a[j] = sj*(cc + ss) * parity, a[k] = sj*(cs - sc); q.r = cj*(cc - ss); } else { a[i] = cj*sc - sj*cs, a[j] = (cj*ss + sj*cc) * parity, a[k] = cj*cs - sj*sc; q.r = cj*cc + sj*ss; } q.v = a; return q; } template<class T> inline bool Euler<T>::legal(typename Euler<T>::Order order) { return (order & ~Legal) ? false : true; } template<class T> typename Euler<T>::Order Euler<T>::order() const { int foo = (_initialAxis == Z ? 0x2000 : (_initialAxis == Y ? 0x1000 : 0)); if (_parityEven) foo |= 0x0100; if (_initialRepeated) foo |= 0x0010; if (_frameStatic) foo++; return (Order)foo; } template<class T> inline void Euler<T>::setOrder(typename Euler<T>::Order p) { set( p & 0x2000 ? Z : (p & 0x1000 ? Y : X), // initial axis !(p & 0x1), // static? !!(p & 0x100), // permutation even? !!(p & 0x10)); // initial repeats? } template<class T> void Euler<T>::set(typename Euler<T>::Axis axis, bool relative, bool parityEven, bool firstRepeats) { _initialAxis = axis; _frameStatic = !relative; _parityEven = parityEven; _initialRepeated = firstRepeats; } template<class T> const Euler<T>& Euler<T>::operator= (const Euler<T> &euler) { x = euler.x; y = euler.y; z = euler.z; _initialAxis = euler._initialAxis; _frameStatic = euler._frameStatic; _parityEven = euler._parityEven; _initialRepeated = euler._initialRepeated; return *this; } template<class T> const Euler<T>& Euler<T>::operator= (const Vec3<T> &v) { x = v.x; y = v.y; z = v.z; return *this; } template<class T> std::ostream& operator << (std::ostream &o, const Euler<T> &euler) { char a[3] = { 'X', 'Y', 'Z' }; const char* r = euler.frameStatic() ? "" : "r"; int i,j,k; euler.angleOrder(i,j,k); if ( euler.initialRepeated() ) k = i; return o << "(" << euler.x << " " << euler.y << " " << euler.z << " " << a[i] << a[j] << a[k] << r << ")"; } template <class T> float Euler<T>::angleMod (T angle) { angle = fmod(T (angle), T (2 * M_PI)); if (angle < -M_PI) angle += 2 * M_PI; if (angle > +M_PI) angle -= 2 * M_PI; return angle; } template <class T> void Euler<T>::simpleXYZRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot) { Vec3<T> d = xyzRot - targetXyzRot; xyzRot[0] = targetXyzRot[0] + angleMod(d[0]); xyzRot[1] = targetXyzRot[1] + angleMod(d[1]); xyzRot[2] = targetXyzRot[2] + angleMod(d[2]); } template <class T> void Euler<T>::nearestRotation (Vec3<T> &xyzRot, const Vec3<T> &targetXyzRot, Order order) { int i,j,k; Euler<T> e (0,0,0, order); e.angleOrder(i,j,k); simpleXYZRotation(xyzRot, targetXyzRot); Vec3<T> otherXyzRot; otherXyzRot[i] = M_PI+xyzRot[i]; otherXyzRot[j] = M_PI-xyzRot[j]; otherXyzRot[k] = M_PI+xyzRot[k]; simpleXYZRotation(otherXyzRot, targetXyzRot); Vec3<T> d = xyzRot - targetXyzRot; Vec3<T> od = otherXyzRot - targetXyzRot; T dMag = d.dot(d); T odMag = od.dot(od); if (odMag < dMag) { xyzRot = otherXyzRot; } } template <class T> void Euler<T>::makeNear (const Euler<T> &target) { Vec3<T> xyzRot = toXYZVector(); Vec3<T> targetXyz; if (order() != target.order()) { Euler<T> targetSameOrder = Euler<T>(target, order()); targetXyz = targetSameOrder.toXYZVector(); } else { targetXyz = target.toXYZVector(); } nearestRotation(xyzRot, targetXyz, order()); setXYZVector(xyzRot); } #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER #pragma warning(default:4244) #endif IMATH_INTERNAL_NAMESPACE_HEADER_EXIT #endif // INCLUDED_IMATHEULER_H