%PDF- %PDF-
Direktori : /proc/self/root/proc/self/root/proc/thread-self/root/usr/include/OpenEXR/ |
Current File : //proc/self/root/proc/self/root/proc/thread-self/root/usr/include/OpenEXR/ImfXdr.h |
/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMF_XDR_H #define INCLUDED_IMF_XDR_H //---------------------------------------------------------------------------- // // Xdr -- routines to convert data between the machine's native // format and a machine-independent external data representation: // // write<R> (T &o, S v); converts a value, v, of type S // into a machine-independent // representation and stores the // result in an output buffer, o. // // read<R> (T &i, S &v); reads the machine-independent // representation of a value of type // S from input buffer i, converts // the value into the machine's native // representation, and stores the result // in v. // // size<S>(); returns the size, in bytes, of the // machine-independent representation // of an object of type S. // // The write() and read() routines are templates; data can be written // to and read from any output or input buffer type T for which a helper // class, R, exits. Class R must define a method to store a char array // in a T, and a method to read a char array from a T: // // struct R // { // static void // writeChars (T &o, const char c[/*n*/], int n) // { // ... // Write c[0], c[1] ... c[n-1] to output buffer o. // } // // static void // readChars (T &i, char c[/*n*/], int n) // { // ... // Read n characters from input buffer i // // and copy them to c[0], c[1] ... c[n-1]. // } // }; // // Example - writing to and reading from iostreams: // // struct CharStreamIO // { // static void // writeChars (ostream &os, const char c[], int n) // { // os.write (c, n); // } // // static void // readChars (istream &is, char c[], int n) // { // is.read (c, n); // } // }; // // ... // // Xdr::write<CharStreamIO> (os, 3); // Xdr::write<CharStreamIO> (os, 5.0); // //---------------------------------------------------------------------------- #include "ImfInt64.h" #include "IexMathExc.h" #include "half.h" #include <limits.h> #include "ImfNamespace.h" OPENEXR_IMF_INTERNAL_NAMESPACE_HEADER_ENTER namespace Xdr { //------------------------------- // Write data to an output stream //------------------------------- template <class S, class T> void write (T &out, bool v); template <class S, class T> void write (T &out, char v); template <class S, class T> void write (T &out, signed char v); template <class S, class T> void write (T &out, unsigned char v); template <class S, class T> void write (T &out, signed short v); template <class S, class T> void write (T &out, unsigned short v); template <class S, class T> void write (T &out, signed int v); template <class S, class T> void write (T &out, unsigned int v); template <class S, class T> void write (T &out, signed long v); template <class S, class T> void write (T &out, unsigned long v); #if ULONG_MAX != 18446744073709551615LU template <class S, class T> void write (T &out, Int64 v); #endif template <class S, class T> void write (T &out, float v); template <class S, class T> void write (T &out, double v); template <class S, class T> void write (T &out, half v); template <class S, class T> void write (T &out, const char v[/*n*/], int n); // fixed-size char array template <class S, class T> void write (T &out, const char v[]); // zero-terminated string //----------------------------------------- // Append padding bytes to an output stream //----------------------------------------- template <class S, class T> void pad (T &out, int n); // write n padding bytes //------------------------------- // Read data from an input stream //------------------------------- template <class S, class T> void read (T &in, bool &v); template <class S, class T> void read (T &in, char &v); template <class S, class T> void read (T &in, signed char &v); template <class S, class T> void read (T &in, unsigned char &v); template <class S, class T> void read (T &in, signed short &v); template <class S, class T> void read (T &in, unsigned short &v); template <class S, class T> void read (T &in, signed int &v); template <class S, class T> void read (T &in, unsigned int &v); template <class S, class T> void read (T &in, signed long &v); template <class S, class T> void read (T &in, unsigned long &v); #if ULONG_MAX != 18446744073709551615LU template <class S, class T> void read (T &in, Int64 &v); #endif template <class S, class T> void read (T &in, float &v); template <class S, class T> void read (T &in, double &v); template <class S, class T> void read (T &in, half &v); template <class S, class T> void read (T &in, char v[/*n*/], int n); // fixed-size char array template <class S, class T> void read (T &in, int n, char v[/*n*/]); // zero-terminated string //------------------------------------------- // Skip over padding bytes in an input stream //------------------------------------------- template <class S, class T> void skip (T &in, int n); // skip n padding bytes //-------------------------------------- // Size of the machine-independent // representation of an object of type S //-------------------------------------- template <class S> int size (); //--------------- // Implementation //--------------- template <class S, class T> inline void writeSignedChars (T &out, const signed char c[], int n) { S::writeChars (out, (const char *) c, n); } template <class S, class T> inline void writeUnsignedChars (T &out, const unsigned char c[], int n) { S::writeChars (out, (const char *) c, n); } template <class S, class T> inline void readSignedChars (T &in, signed char c[], int n) { S::readChars (in, (char *) c, n); } template <class S, class T> inline void readUnsignedChars (T &in, unsigned char c[], int n) { S::readChars (in, (char *) c, n); } template <class S, class T> inline void write (T &out, bool v) { char c = !!v; S::writeChars (out, &c, 1); } template <class S, class T> inline void write (T &out, char v) { S::writeChars (out, &v, 1); } template <class S, class T> inline void write (T &out, signed char v) { writeSignedChars<S> (out, &v, 1); } template <class S, class T> inline void write (T &out, unsigned char v) { writeUnsignedChars<S> (out, &v, 1); } template <class S, class T> void write (T &out, signed short v) { signed char b[2]; b[0] = (signed char) (v); b[1] = (signed char) (v >> 8); writeSignedChars<S> (out, b, 2); } template <class S, class T> void write (T &out, unsigned short v) { unsigned char b[2]; b[0] = (unsigned char) (v); b[1] = (unsigned char) (v >> 8); writeUnsignedChars<S> (out, b, 2); } template <class S, class T> void write (T &out, signed int v) { signed char b[4]; b[0] = (signed char) (v); b[1] = (signed char) (v >> 8); b[2] = (signed char) (v >> 16); b[3] = (signed char) (v >> 24); writeSignedChars<S> (out, b, 4); } template <class S, class T> void write (T &out, unsigned int v) { unsigned char b[4]; b[0] = (unsigned char) (v); b[1] = (unsigned char) (v >> 8); b[2] = (unsigned char) (v >> 16); b[3] = (unsigned char) (v >> 24); writeUnsignedChars<S> (out, b, 4); } template <class S, class T> void write (T &out, signed long v) { signed char b[8]; b[0] = (signed char) (v); b[1] = (signed char) (v >> 8); b[2] = (signed char) (v >> 16); b[3] = (signed char) (v >> 24); #if LONG_MAX == 2147483647 if (v >= 0) { b[4] = 0; b[5] = 0; b[6] = 0; b[7] = 0; } else { b[4] = ~0; b[5] = ~0; b[6] = ~0; b[7] = ~0; } #elif LONG_MAX == 9223372036854775807L b[4] = (signed char) (v >> 32); b[5] = (signed char) (v >> 40); b[6] = (signed char) (v >> 48); b[7] = (signed char) (v >> 56); #else #error write<T> (T &out, signed long v) not implemented #endif writeSignedChars<S> (out, b, 8); } template <class S, class T> void write (T &out, unsigned long v) { unsigned char b[8]; b[0] = (unsigned char) (v); b[1] = (unsigned char) (v >> 8); b[2] = (unsigned char) (v >> 16); b[3] = (unsigned char) (v >> 24); #if ULONG_MAX == 4294967295U b[4] = 0; b[5] = 0; b[6] = 0; b[7] = 0; #elif ULONG_MAX == 18446744073709551615LU b[4] = (unsigned char) (v >> 32); b[5] = (unsigned char) (v >> 40); b[6] = (unsigned char) (v >> 48); b[7] = (unsigned char) (v >> 56); #else #error write<T> (T &out, unsigned long v) not implemented #endif writeUnsignedChars<S> (out, b, 8); } #if ULONG_MAX != 18446744073709551615LU template <class S, class T> void write (T &out, Int64 v) { unsigned char b[8]; b[0] = (unsigned char) (v); b[1] = (unsigned char) (v >> 8); b[2] = (unsigned char) (v >> 16); b[3] = (unsigned char) (v >> 24); b[4] = (unsigned char) (v >> 32); b[5] = (unsigned char) (v >> 40); b[6] = (unsigned char) (v >> 48); b[7] = (unsigned char) (v >> 56); writeUnsignedChars<S> (out, b, 8); } #endif template <class S, class T> void write (T &out, float v) { union {unsigned int i; float f;} u; u.f = v; unsigned char b[4]; b[0] = (unsigned char) (u.i); b[1] = (unsigned char) (u.i >> 8); b[2] = (unsigned char) (u.i >> 16); b[3] = (unsigned char) (u.i >> 24); writeUnsignedChars<S> (out, b, 4); } template <class S, class T> void write (T &out, double v) { union {Int64 i; double d;} u; u.d = v; unsigned char b[8]; b[0] = (unsigned char) (u.i); b[1] = (unsigned char) (u.i >> 8); b[2] = (unsigned char) (u.i >> 16); b[3] = (unsigned char) (u.i >> 24); b[4] = (unsigned char) (u.i >> 32); b[5] = (unsigned char) (u.i >> 40); b[6] = (unsigned char) (u.i >> 48); b[7] = (unsigned char) (u.i >> 56); writeUnsignedChars<S> (out, b, 8); } template <class S, class T> inline void write (T &out, half v) { unsigned char b[2]; b[0] = (unsigned char) (v.bits()); b[1] = (unsigned char) (v.bits() >> 8); writeUnsignedChars<S> (out, b, 2); } template <class S, class T> inline void write (T &out, const char v[], int n) // fixed-size char array { S::writeChars (out, v, n); } template <class S, class T> void write (T &out, const char v[]) // zero-terminated string { while (*v) { S::writeChars (out, v, 1); ++v; } S::writeChars (out, v, 1); } template <class S, class T> void pad (T &out, int n) // add n padding bytes { for (int i = 0; i < n; i++) { const char c = 0; S::writeChars (out, &c, 1); } } template <class S, class T> inline void read (T &in, bool &v) { char c; S::readChars (in, &c, 1); v = !!c; } template <class S, class T> inline void read (T &in, char &v) { S::readChars (in, &v, 1); } template <class S, class T> inline void read (T &in, signed char &v) { readSignedChars<S> (in, &v, 1); } template <class S, class T> inline void read (T &in, unsigned char &v) { readUnsignedChars<S> (in, &v, 1); } template <class S, class T> void read (T &in, signed short &v) { signed char b[2]; readSignedChars<S> (in, b, 2); v = (b[0] & 0x00ff) | (b[1] << 8); } template <class S, class T> void read (T &in, unsigned short &v) { unsigned char b[2]; readUnsignedChars<S> (in, b, 2); v = (b[0] & 0x00ff) | (b[1] << 8); } template <class S, class T> void read (T &in, signed int &v) { signed char b[4]; readSignedChars<S> (in, b, 4); v = (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) | ((b[2] << 16) & 0x00ff0000) | (b[3] << 24); } template <class S, class T> void read (T &in, unsigned int &v) { unsigned char b[4]; readUnsignedChars<S> (in, b, 4); v = (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) | ((b[2] << 16) & 0x00ff0000) | (b[3] << 24); } template <class S, class T> void read (T &in, signed long &v) { signed char b[8]; readSignedChars<S> (in, b, 8); #if LONG_MAX == 2147483647 v = (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) | ((b[2] << 16) & 0x00ff0000) | (b[3] << 24); if (( b[4] || b[5] || b[6] || b[7]) && (~b[4] || ~b[5] || ~b[6] || ~b[7])) { throw IEX_NAMESPACE::OverflowExc ("Long int overflow - read a large " "64-bit integer in a 32-bit process."); } #elif LONG_MAX == 9223372036854775807L v = ((long) b[0] & 0x00000000000000ff) | (((long) b[1] << 8) & 0x000000000000ff00) | (((long) b[2] << 16) & 0x0000000000ff0000) | (((long) b[3] << 24) & 0x00000000ff000000) | (((long) b[4] << 32) & 0x000000ff00000000) | (((long) b[5] << 40) & 0x0000ff0000000000) | (((long) b[6] << 48) & 0x00ff000000000000) | ((long) b[7] << 56); #else #error read<T> (T &in, signed long &v) not implemented #endif } template <class S, class T> void read (T &in, unsigned long &v) { unsigned char b[8]; readUnsignedChars<S> (in, b, 8); #if ULONG_MAX == 4294967295U v = (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) | ((b[2] << 16) & 0x00ff0000) | (b[3] << 24); if (b[4] || b[5] || b[6] || b[7]) { throw IEX_NAMESPACE::OverflowExc ("Long int overflow - read a large " "64-bit integer in a 32-bit process."); } #elif ULONG_MAX == 18446744073709551615LU v = ((unsigned long) b[0] & 0x00000000000000ff) | (((unsigned long) b[1] << 8) & 0x000000000000ff00) | (((unsigned long) b[2] << 16) & 0x0000000000ff0000) | (((unsigned long) b[3] << 24) & 0x00000000ff000000) | (((unsigned long) b[4] << 32) & 0x000000ff00000000) | (((unsigned long) b[5] << 40) & 0x0000ff0000000000) | (((unsigned long) b[6] << 48) & 0x00ff000000000000) | ((unsigned long) b[7] << 56); #else #error read<T> (T &in, unsigned long &v) not implemented #endif } #if ULONG_MAX != 18446744073709551615LU template <class S, class T> void read (T &in, Int64 &v) { unsigned char b[8]; readUnsignedChars<S> (in, b, 8); v = ((Int64) b[0] & 0x00000000000000ffLL) | (((Int64) b[1] << 8) & 0x000000000000ff00LL) | (((Int64) b[2] << 16) & 0x0000000000ff0000LL) | (((Int64) b[3] << 24) & 0x00000000ff000000LL) | (((Int64) b[4] << 32) & 0x000000ff00000000LL) | (((Int64) b[5] << 40) & 0x0000ff0000000000LL) | (((Int64) b[6] << 48) & 0x00ff000000000000LL) | ((Int64) b[7] << 56); } #endif template <class S, class T> void read (T &in, float &v) { unsigned char b[4]; readUnsignedChars<S> (in, b, 4); union {unsigned int i; float f;} u; u.i = (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) | ((b[2] << 16) & 0x00ff0000) | (b[3] << 24); v = u.f; } template <class S, class T> void read (T &in, double &v) { unsigned char b[8]; readUnsignedChars<S> (in, b, 8); union {Int64 i; double d;} u; u.i = ((Int64) b[0] & 0x00000000000000ffULL) | (((Int64) b[1] << 8) & 0x000000000000ff00ULL) | (((Int64) b[2] << 16) & 0x0000000000ff0000ULL) | (((Int64) b[3] << 24) & 0x00000000ff000000ULL) | (((Int64) b[4] << 32) & 0x000000ff00000000ULL) | (((Int64) b[5] << 40) & 0x0000ff0000000000ULL) | (((Int64) b[6] << 48) & 0x00ff000000000000ULL) | ((Int64) b[7] << 56); v = u.d; } template <class S, class T> inline void read (T &in, half &v) { unsigned char b[2]; readUnsignedChars<S> (in, b, 2); v.setBits ((b[0] & 0x00ff) | (b[1] << 8)); } template <class S, class T> inline void read (T &in, char v[], int n) // fixed-size char array { S::readChars (in, v, n); } template <class S, class T> void read (T &in, int n, char v[]) // zero-terminated string { while (n >= 0) { S::readChars (in, v, 1); if (*v == 0) break; --n; ++v; } } template <class S, class T> void skip (T &in, int n) // skip n padding bytes { char c[1024]; while (n >= (int) sizeof (c)) { if (!S::readChars (in, c, sizeof (c))) return; n -= sizeof (c); } if (n >= 1) S::readChars (in, c, n); } template <> inline int size <bool> () {return 1;} template <> inline int size <char> () {return 1;} template <> inline int size <signed char> () {return 1;} template <> inline int size <unsigned char> () {return 1;} template <> inline int size <signed short> () {return 2;} template <> inline int size <unsigned short> () {return 2;} template <> inline int size <signed int> () {return 4;} template <> inline int size <unsigned int> () {return 4;} template <> inline int size <signed long> () {return 8;} template <> inline int size <unsigned long> () {return 8;} template <> inline int size <unsigned long long> () {return 8;} template <> inline int size <float> () {return 4;} template <> inline int size <double> () {return 8;} template <> inline int size <half> () {return 2;} } // namespace Xdr OPENEXR_IMF_INTERNAL_NAMESPACE_HEADER_EXIT #if defined (OPENEXR_IMF_INTERNAL_NAMESPACE_AUTO_EXPOSE) namespace Imf{using namespace OPENEXR_IMF_INTERNAL_NAMESPACE;} #endif #endif