%PDF- %PDF-
Direktori : /proc/thread-self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/ |
Current File : //proc/thread-self/root/opt/alt/python37/lib64/python3.7/site-packages/numpy/lib/scimath.py |
""" Wrapper functions to more user-friendly calling of certain math functions whose output data-type is different than the input data-type in certain domains of the input. For example, for functions like `log` with branch cuts, the versions in this module provide the mathematically valid answers in the complex plane:: >>> import math >>> from numpy.lib import scimath >>> scimath.log(-math.exp(1)) == (1+1j*math.pi) True Similarly, `sqrt`, other base logarithms, `power` and trig functions are correctly handled. See their respective docstrings for specific examples. """ from __future__ import division, absolute_import, print_function import numpy.core.numeric as nx import numpy.core.numerictypes as nt from numpy.core.numeric import asarray, any from numpy.lib.type_check import isreal __all__ = [ 'sqrt', 'log', 'log2', 'logn', 'log10', 'power', 'arccos', 'arcsin', 'arctanh' ] _ln2 = nx.log(2.0) def _tocomplex(arr): """Convert its input `arr` to a complex array. The input is returned as a complex array of the smallest type that will fit the original data: types like single, byte, short, etc. become csingle, while others become cdouble. A copy of the input is always made. Parameters ---------- arr : array Returns ------- array An array with the same input data as the input but in complex form. Examples -------- First, consider an input of type short: >>> a = np.array([1,2,3],np.short) >>> ac = np.lib.scimath._tocomplex(a); ac array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) >>> ac.dtype dtype('complex64') If the input is of type double, the output is correspondingly of the complex double type as well: >>> b = np.array([1,2,3],np.double) >>> bc = np.lib.scimath._tocomplex(b); bc array([ 1.+0.j, 2.+0.j, 3.+0.j]) >>> bc.dtype dtype('complex128') Note that even if the input was complex to begin with, a copy is still made, since the astype() method always copies: >>> c = np.array([1,2,3],np.csingle) >>> cc = np.lib.scimath._tocomplex(c); cc array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) >>> c *= 2; c array([ 2.+0.j, 4.+0.j, 6.+0.j], dtype=complex64) >>> cc array([ 1.+0.j, 2.+0.j, 3.+0.j], dtype=complex64) """ if issubclass(arr.dtype.type, (nt.single, nt.byte, nt.short, nt.ubyte, nt.ushort, nt.csingle)): return arr.astype(nt.csingle) else: return arr.astype(nt.cdouble) def _fix_real_lt_zero(x): """Convert `x` to complex if it has real, negative components. Otherwise, output is just the array version of the input (via asarray). Parameters ---------- x : array_like Returns ------- array Examples -------- >>> np.lib.scimath._fix_real_lt_zero([1,2]) array([1, 2]) >>> np.lib.scimath._fix_real_lt_zero([-1,2]) array([-1.+0.j, 2.+0.j]) """ x = asarray(x) if any(isreal(x) & (x < 0)): x = _tocomplex(x) return x def _fix_int_lt_zero(x): """Convert `x` to double if it has real, negative components. Otherwise, output is just the array version of the input (via asarray). Parameters ---------- x : array_like Returns ------- array Examples -------- >>> np.lib.scimath._fix_int_lt_zero([1,2]) array([1, 2]) >>> np.lib.scimath._fix_int_lt_zero([-1,2]) array([-1., 2.]) """ x = asarray(x) if any(isreal(x) & (x < 0)): x = x * 1.0 return x def _fix_real_abs_gt_1(x): """Convert `x` to complex if it has real components x_i with abs(x_i)>1. Otherwise, output is just the array version of the input (via asarray). Parameters ---------- x : array_like Returns ------- array Examples -------- >>> np.lib.scimath._fix_real_abs_gt_1([0,1]) array([0, 1]) >>> np.lib.scimath._fix_real_abs_gt_1([0,2]) array([ 0.+0.j, 2.+0.j]) """ x = asarray(x) if any(isreal(x) & (abs(x) > 1)): x = _tocomplex(x) return x def sqrt(x): """ Compute the square root of x. For negative input elements, a complex value is returned (unlike `numpy.sqrt` which returns NaN). Parameters ---------- x : array_like The input value(s). Returns ------- out : ndarray or scalar The square root of `x`. If `x` was a scalar, so is `out`, otherwise an array is returned. See Also -------- numpy.sqrt Examples -------- For real, non-negative inputs this works just like `numpy.sqrt`: >>> np.lib.scimath.sqrt(1) 1.0 >>> np.lib.scimath.sqrt([1, 4]) array([ 1., 2.]) But it automatically handles negative inputs: >>> np.lib.scimath.sqrt(-1) (0.0+1.0j) >>> np.lib.scimath.sqrt([-1,4]) array([ 0.+1.j, 2.+0.j]) """ x = _fix_real_lt_zero(x) return nx.sqrt(x) def log(x): """ Compute the natural logarithm of `x`. Return the "principal value" (for a description of this, see `numpy.log`) of :math:`log_e(x)`. For real `x > 0`, this is a real number (``log(0)`` returns ``-inf`` and ``log(np.inf)`` returns ``inf``). Otherwise, the complex principle value is returned. Parameters ---------- x : array_like The value(s) whose log is (are) required. Returns ------- out : ndarray or scalar The log of the `x` value(s). If `x` was a scalar, so is `out`, otherwise an array is returned. See Also -------- numpy.log Notes ----- For a log() that returns ``NAN`` when real `x < 0`, use `numpy.log` (note, however, that otherwise `numpy.log` and this `log` are identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and, notably, the complex principle value if ``x.imag != 0``). Examples -------- >>> np.emath.log(np.exp(1)) 1.0 Negative arguments are handled "correctly" (recall that ``exp(log(x)) == x`` does *not* hold for real ``x < 0``): >>> np.emath.log(-np.exp(1)) == (1 + np.pi * 1j) True """ x = _fix_real_lt_zero(x) return nx.log(x) def log10(x): """ Compute the logarithm base 10 of `x`. Return the "principal value" (for a description of this, see `numpy.log10`) of :math:`log_{10}(x)`. For real `x > 0`, this is a real number (``log10(0)`` returns ``-inf`` and ``log10(np.inf)`` returns ``inf``). Otherwise, the complex principle value is returned. Parameters ---------- x : array_like or scalar The value(s) whose log base 10 is (are) required. Returns ------- out : ndarray or scalar The log base 10 of the `x` value(s). If `x` was a scalar, so is `out`, otherwise an array object is returned. See Also -------- numpy.log10 Notes ----- For a log10() that returns ``NAN`` when real `x < 0`, use `numpy.log10` (note, however, that otherwise `numpy.log10` and this `log10` are identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and, notably, the complex principle value if ``x.imag != 0``). Examples -------- (We set the printing precision so the example can be auto-tested) >>> np.set_printoptions(precision=4) >>> np.emath.log10(10**1) 1.0 >>> np.emath.log10([-10**1, -10**2, 10**2]) array([ 1.+1.3644j, 2.+1.3644j, 2.+0.j ]) """ x = _fix_real_lt_zero(x) return nx.log10(x) def logn(n, x): """ Take log base n of x. If `x` contains negative inputs, the answer is computed and returned in the complex domain. Parameters ---------- n : int The base in which the log is taken. x : array_like The value(s) whose log base `n` is (are) required. Returns ------- out : ndarray or scalar The log base `n` of the `x` value(s). If `x` was a scalar, so is `out`, otherwise an array is returned. Examples -------- >>> np.set_printoptions(precision=4) >>> np.lib.scimath.logn(2, [4, 8]) array([ 2., 3.]) >>> np.lib.scimath.logn(2, [-4, -8, 8]) array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ]) """ x = _fix_real_lt_zero(x) n = _fix_real_lt_zero(n) return nx.log(x)/nx.log(n) def log2(x): """ Compute the logarithm base 2 of `x`. Return the "principal value" (for a description of this, see `numpy.log2`) of :math:`log_2(x)`. For real `x > 0`, this is a real number (``log2(0)`` returns ``-inf`` and ``log2(np.inf)`` returns ``inf``). Otherwise, the complex principle value is returned. Parameters ---------- x : array_like The value(s) whose log base 2 is (are) required. Returns ------- out : ndarray or scalar The log base 2 of the `x` value(s). If `x` was a scalar, so is `out`, otherwise an array is returned. See Also -------- numpy.log2 Notes ----- For a log2() that returns ``NAN`` when real `x < 0`, use `numpy.log2` (note, however, that otherwise `numpy.log2` and this `log2` are identical, i.e., both return ``-inf`` for `x = 0`, ``inf`` for `x = inf`, and, notably, the complex principle value if ``x.imag != 0``). Examples -------- We set the printing precision so the example can be auto-tested: >>> np.set_printoptions(precision=4) >>> np.emath.log2(8) 3.0 >>> np.emath.log2([-4, -8, 8]) array([ 2.+4.5324j, 3.+4.5324j, 3.+0.j ]) """ x = _fix_real_lt_zero(x) return nx.log2(x) def power(x, p): """ Return x to the power p, (x**p). If `x` contains negative values, the output is converted to the complex domain. Parameters ---------- x : array_like The input value(s). p : array_like of ints The power(s) to which `x` is raised. If `x` contains multiple values, `p` has to either be a scalar, or contain the same number of values as `x`. In the latter case, the result is ``x[0]**p[0], x[1]**p[1], ...``. Returns ------- out : ndarray or scalar The result of ``x**p``. If `x` and `p` are scalars, so is `out`, otherwise an array is returned. See Also -------- numpy.power Examples -------- >>> np.set_printoptions(precision=4) >>> np.lib.scimath.power([2, 4], 2) array([ 4, 16]) >>> np.lib.scimath.power([2, 4], -2) array([ 0.25 , 0.0625]) >>> np.lib.scimath.power([-2, 4], 2) array([ 4.+0.j, 16.+0.j]) """ x = _fix_real_lt_zero(x) p = _fix_int_lt_zero(p) return nx.power(x, p) def arccos(x): """ Compute the inverse cosine of x. Return the "principal value" (for a description of this, see `numpy.arccos`) of the inverse cosine of `x`. For real `x` such that `abs(x) <= 1`, this is a real number in the closed interval :math:`[0, \\pi]`. Otherwise, the complex principle value is returned. Parameters ---------- x : array_like or scalar The value(s) whose arccos is (are) required. Returns ------- out : ndarray or scalar The inverse cosine(s) of the `x` value(s). If `x` was a scalar, so is `out`, otherwise an array object is returned. See Also -------- numpy.arccos Notes ----- For an arccos() that returns ``NAN`` when real `x` is not in the interval ``[-1,1]``, use `numpy.arccos`. Examples -------- >>> np.set_printoptions(precision=4) >>> np.emath.arccos(1) # a scalar is returned 0.0 >>> np.emath.arccos([1,2]) array([ 0.-0.j , 0.+1.317j]) """ x = _fix_real_abs_gt_1(x) return nx.arccos(x) def arcsin(x): """ Compute the inverse sine of x. Return the "principal value" (for a description of this, see `numpy.arcsin`) of the inverse sine of `x`. For real `x` such that `abs(x) <= 1`, this is a real number in the closed interval :math:`[-\\pi/2, \\pi/2]`. Otherwise, the complex principle value is returned. Parameters ---------- x : array_like or scalar The value(s) whose arcsin is (are) required. Returns ------- out : ndarray or scalar The inverse sine(s) of the `x` value(s). If `x` was a scalar, so is `out`, otherwise an array object is returned. See Also -------- numpy.arcsin Notes ----- For an arcsin() that returns ``NAN`` when real `x` is not in the interval ``[-1,1]``, use `numpy.arcsin`. Examples -------- >>> np.set_printoptions(precision=4) >>> np.emath.arcsin(0) 0.0 >>> np.emath.arcsin([0,1]) array([ 0. , 1.5708]) """ x = _fix_real_abs_gt_1(x) return nx.arcsin(x) def arctanh(x): """ Compute the inverse hyperbolic tangent of `x`. Return the "principal value" (for a description of this, see `numpy.arctanh`) of `arctanh(x)`. For real `x` such that `abs(x) < 1`, this is a real number. If `abs(x) > 1`, or if `x` is complex, the result is complex. Finally, `x = 1` returns``inf`` and `x=-1` returns ``-inf``. Parameters ---------- x : array_like The value(s) whose arctanh is (are) required. Returns ------- out : ndarray or scalar The inverse hyperbolic tangent(s) of the `x` value(s). If `x` was a scalar so is `out`, otherwise an array is returned. See Also -------- numpy.arctanh Notes ----- For an arctanh() that returns ``NAN`` when real `x` is not in the interval ``(-1,1)``, use `numpy.arctanh` (this latter, however, does return +/-inf for `x = +/-1`). Examples -------- >>> np.set_printoptions(precision=4) >>> np.emath.arctanh(np.matrix(np.eye(2))) array([[ Inf, 0.], [ 0., Inf]]) >>> np.emath.arctanh([1j]) array([ 0.+0.7854j]) """ x = _fix_real_abs_gt_1(x) return nx.arctanh(x)