%PDF- %PDF-
Direktori : /proc/thread-self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/guppy/etc/ |
Current File : //proc/thread-self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/guppy/etc/RE.py |
import functools from guppy.etc.RE_Rect import chooserects from guppy.etc.IterPermute import iterpermute class InfiniteError(Exception): pass class WordsMemo: def __init__(self, re, ch): self.re = re self.ch = ch self.xs = {} self.N = 0 def get_words_of_length(self, N): # Return a list of words of length up to N if N not in self.xs: self.xs[N] = self.re.get_words_of_length_memoized(N, self) return self.xs[N] def get_words_of_length_upto(self, N): # Return all words of length up to N, in the form # [(0, <list of words of length 0>), # (1, <list of words of length 0>), # ...] xsu = [] for i in range(N+1): xs = self.get_words_of_length(i) if xs: xsu.append((i, xs)) return xsu REBASE = tuple class RE(REBASE): # Regular expression nodes # The operators are choosen to be compatible with Pythonic standards: # o sets : using | for union # o strings, sequences : using + for concatenation. # # This differs from mathematical presentations of regular # expressions where + is the union, but it seemed more important # to not confuse the Python usage. # There are also operators for closure x*, x+ that can not be # represented directly in Python expressions and these were choosen # to use a function call syntax. # The following table summarizes the operators. # RE node expr re lib mathematical name # x + y x y x y Concatenation # x | y x | y x + y Union # x('*') x* x* Kleene closure # x('+') x+ x+ Positive closure # x('?') x? _re_special = r'.^$*+?{}\[]|()' def __add__(a, b): if isinstance(b, RE): return concat(a, b) else: return Concatenation(a, Single(b)) def __call__(a, *args, **kwds): if not kwds: if args == ('*',): return KleeneClosure(a) elif args == ('+',): return PositiveClosure(a) elif args == ('?',): return EpsilonOrOne(a) raise ValueError( "Argument to regular expression must be '*' or '+' or '?'") def __hash__(self): return hash((self._name, tuple(self))) def __eq__(a, b): return (a._name == b._name and tuple(a) == tuple(b)) def __lt__(a, b): if a._name == b._name: return tuple(a) < tuple(b) else: return a._name < b._name def __or__(a, b): return Union(a, b) def get_num_closures(self): ns = 0 for ch in self: ns += ch.get_num_closures() return ns def get_num_syms(self): ns = 0 for ch in self: ns += ch.get_num_syms() return ns def get_sum_sym_lengths(self): ns = 0 for ch in self: ns += ch.get_sum_sym_lengths() return ns def get_words_memo(self): ch = [x.get_words_memo() for x in self] return WordsMemo(self, ch) def get_words_of_length(self, N): xs = self.get_words_memo() return xs.get_words_of_length(N) def mapchildren(self, f): return self.__class__(*[f(x) for x in self]) def regexpform(self): return self.mappedrepr(regexpname) def reversed(self): return self.mapchildren(lambda x: x.reversed()) def rempretup(self): def f(x): if isinstance(x, Seq): if x is not Epsilon and isinstance(x[0], tuple): ws = x[1:] return Seq(*ws) else: return x return x.mapchildren(f) return f(self) def seqatoms(self): sa = [] self.apseqatoms(sa.append) return sa def sequni(self): d = {} us = [] def ap(x): if x not in d: d[x] = 1 us.append(x) self.apseq(ap) return Union(*us) def shform(self, conc=' '): r = self.mappedrepr(regexpname) if conc != ' ': r = conc.join(r.split(' ')) return r def simplified(self, *a, **k): return self def simulform(self): def f(x): if x == '': return '()' return str(x) return self.mappedrepr(f) def regexpname(s): if s == '': return '()' special = RE._re_special ren = [] for c in str(s): if c in special+"', ": #c = r'\%s'%c c = '' ren.append(c) return ''.join(ren) class Seq(RE): _priority = 0 _name = 'Seq' def __new__(clas, *symbols): if not symbols: return Epsilon return REBASE.__new__(clas, symbols) def __repr__(self): return '%s(%s)' % (self.__class__.__name__, ', '.join(['%r' % (x,) for x in self])) def apseq(self, ap): ap(self) def apseqatoms(self, ap): for x in self: ap(Single(x)) def get_num_closures(self): return 0 def get_num_syms(self): return len(self) def get_sum_sym_lengths(self): s = 0 for x in self: s += len(str(x)) return s def get_words_memo(self): return WordsMemo(self, ()) def get_words_of_length_memoized(self, N, memo): if N == len(self): return [self] else: return [] def limited(self, N): return self def mappedrepr(self, f): if not self: return f('') return ' '.join(['%s' % (f(x),) for x in self]) def reversed(self): r = list(self) r.reverse() return self.__class__(*r) def unionsplitted(self): return [self] def Single(symbol): return REBASE.__new__(Seq, (symbol,)) Epsilon = REBASE.__new__(Seq, ()) def concat(*args): args = [x for x in args if x is not Epsilon] if len(args) < 2: if not args: return Epsilon return args[0] return REBASE.__new__(Concatenation, args) class Concatenation(RE): _priority = 2 _name = 'Concat' def __new__(clas, *args): if len(args) < 2: if not args: return Epsilon return args[0] return REBASE.__new__(clas, args) def __repr__(self): rs = [] for ch in self: r = '%r' % (ch,) if ch._priority > self._priority: r = '(%s)' % (r,) rs.append(r) return ' + '.join(rs) def apseq(self, ap): uns = [x.sequni() for x in self] ixs = [0]*len(uns) while 1: xs = [] for (i, us) in enumerate(uns): for x in us[ixs[i]]: if x is not Epsilon: xs.append(x) ap(Seq(*xs)) j = 0 for j, ix in enumerate(ixs): ix += 1 if ix >= len(uns[j]): ix = 0 ixs[j] = ix if ix != 0: break else: break def apseqatoms(self, ap): for x in self: x.apseqatoms(ap) def get_words_of_length_memoized(self, N, memo): chxs = [] for ch in memo.ch: chxs.append(ch.get_words_of_length_upto(N)) xs = [] seen = {} def ads(xx, i, n): if i == len(chxs): if n == N: for toconc in iterpermute(*xx): conc = simple_Concatenation(toconc) if conc not in seen: xs.append(conc) seen[conc] = 1 else: for m, x in chxs[i]: if n + m <= N: ads(xx + [x], i + 1, n + m) ads([], 0, 0) return xs def limited(self, N): return Concatenation(*[x.limited(N) for x in self]) def mappedrepr(self, f): rs = [] for ch in self: r = ch.mappedrepr(f) if ch._priority > self._priority: r = '(%s)' % (r,) rs.append(r) return ' '.join(rs) def reversed(self): r = [x.reversed() for x in self] r.reverse() return self.__class__(*r) def simplified(self, *a, **k): conc = [x.simplified(*a, **k) for x in self] sa = [] for c in conc: for a in c.seqatoms(): sa.append(a) return simple_Concatenation(sa) def unionsplitted(self): runs = [] uns = [] for (i, x) in enumerate(self): us = x.unionsplitted() if len(us) > 1: uns.append((i, us)) if not uns: return [self] ixs = [0]*len(uns) ch = list(self) while 1: xs = [] i0 = 0 for j, (i, us) in enumerate(uns): xs.extend(ch[i0:i]) ix = ixs[j] xs.append(us[ix]) i0 = i + 1 xs.extend(ch[i0:]) runs.append(concat(*xs)) j = 0 for j, ix in enumerate(ixs): ix += 1 if ix >= len(uns[j][1]): ix = 0 ixs[j] = ix if ix != 0: break else: return runs class SimplifiedConcatenation(Concatenation): def simplified(self, *a, **k): return self def conclosure(conc): # Simplification noted Mar 5 2005 # Simplify ... b b* ... or ... b* b ... to ... b+ ... # conc is a sequence of regular expressions seen = {} nconc = [] w0 = None for w in conc: if w0 is not None: if (w._name == '*' and # Not isinstance(KleeneClosure), would catch PositiveClosure w[0] == w0): w = PositiveClosure(w0) elif (w0._name == '*' and w0[0] == w): w = PositiveClosure(w) else: if w0 is not None: nconc.append(w0) w0 = w if w0 is not None: nconc.append(w0) return nconc def simple_Concatenation(conc): if len(conc) > 1: conc0 = conc conc = conclosure(conc) nconc = [] i = 0 j = 0 while i < len(conc): e = conc[i] if not isinstance(e, Seq): i += 1 nconc.append(e) continue j = i while j < len(conc): if not isinstance(conc[j], Seq): break j += 1 if j == i + 1: nconc.append(e) else: syms = [] for k in range(i, j): e = conc[k] syms.extend(list(e)) nconc.append(Seq(*syms)) i = j if len(nconc) > 1: return Concatenation(*nconc) elif nconc: return nconc[0] else: return Epsilon gauges = [ lambda x:x.get_num_syms(), lambda x:x.get_num_closures(), lambda x:x.get_sum_sym_lengths() ] def simpleunion(lines): choosen = chooserects(lines, gauges) have_epsilon = 0 while 1: if len(choosen) == 1 and (choosen[0].width == 0 or len(choosen[0].lines) == 1): us = [] for line in choosen[0].lines: if line: us.append(line) else: have_epsilon = 1 break us = [] for r in choosen: conc = r.get_common_part() olines = r.get_uncommons() u = simpleunion(olines) if u is not Epsilon: if r.dir == -1: conc = [u]+conc else: conc = conc + [u] if conc: us.append(conc) else: have_epsilon = 1 assert not isinstance(us[-1], str) choosen = chooserects(us, gauges) if len(us) > 1: nus = [simple_Concatenation(line) for line in us] u = SimplifiedUnion(*nus) elif us: u = simple_Concatenation(us[0]) else: u = None if have_epsilon: if u is not None: u = simple_EpsilonOrOne(u) else: u = Epsilon return u class Union(RE): _priority = 3 _name = 'Union' def __new__(clas, *args): return REBASE.__new__(clas, args) def __repr__(self): rs = [] for ch in self: r = '%r' % (ch,) if ch._priority > self._priority: r = '(%s)' % r rs.append(r) return ' | '.join(rs) def apseq(self, ap): for c in self: c.apseq(ap) def apseqatoms(self, ap): for x in self: x.apseqatoms(ap) def get_words_of_length_memoized(self, N, memo): xs = [] seen = {} for ch in memo.ch: for x in ch.get_words_of_length(N): if x not in seen: seen[x] = 1 xs.append(x) return xs def limited(self, N): uni = [x.limited(N) for x in self] for i, x in enumerate(uni): if x is not self[i]: return self.__class__(*uni) return self def mappedrepr(self, f): rs = [] for ch in self: r = '%s' % (ch.mappedrepr(f),) if ch._priority > self._priority: r = '(%s)' % r rs.append(r) return ' | '.join(rs) def simplified(self, args=None, *a, **k): if args is None: args = [x.simplified() for x in self.unionsplitted()] #args = [x for x in self.unionsplitted()] # Create a simplfied union # Assuming args are simplified, non-unions ch = [a.seqatoms() for a in args] return simpleunion(ch) def unionsplitted(self): us = [] for x in self: us.extend(list(x.unionsplitted())) return us class SimplifiedUnion(Union): def simplified(self, *a, **k): return self class Called(RE): _priority = 1 def __new__(clas, arg): return REBASE.__new__(clas, (arg,)) def __repr__(self): ch = self[0] r = '%r' % (ch,) if ch._priority > self._priority: r = '(%s)' % r return "%s(%r)" % (r, self._name) def apseqatoms(self, ap): ap(self) def get_num_closures(self): return 1 + self[0].get_num_closures() def mappedrepr(self, f): ch = self[0] r = ch.mappedrepr(f) if (ch._priority > self._priority or isinstance(ch, Seq) and len(ch) > 1): r = '(%s)' % r return "%s%s" % (r, self._name) def simplified(self, *a, **k): return self.__class__(self[0].simplified(*a, **k)) class Closure(Called): def get_words_of_length_memoized(self, N, memo): if N == 0: return [Epsilon] if N == 1: return memo.ch[0].get_words_of_length(1) xs = [] seen = {} for i in range(1, N): a = memo.get_words_of_length(i) b = memo.get_words_of_length(N-i) for ai in a: for bi in b: aibi = simple_Concatenation((ai, bi)) if aibi not in seen: xs.append(aibi) seen[aibi] = 1 for x in memo.ch[0].get_words_of_length(N): if x not in seen: xs.append(x) seen[x] = 1 return xs def unionsplitted(self): return [self] class KleeneClosure(Closure): _name = '*' def apseq(self, ap): raise InfiniteError( 'apseq: Regular expression is infinite: contains a Kleene Closure') def limited(self, N): if N == 0: return Epsilon cl = self[0].limited(N) uni = [] for i in range(N+1): toconc = [cl]*i uni.append(Concatenation(*toconc)) return Union(*uni) def simplified(self, *a, **k): return simple_KleeneClosure(self[0].simplified(*a, **k)) def simple_KleeneClosure(x): # (b+)* -> b* if x._name == '+': return simple_KleeneClosure(x[0]) return KleeneClosure(x) class PositiveClosure(Closure): _name = '+' def apseq(self, ap): raise InfiniteError( 'apseq: Regular expression is infinite: contains a Positive Closure') def apseqatoms(self, ap): self[0].apseqatoms(ap) simple_KleeneClosure(self[0]).apseqatoms(ap) def get_words_of_length_memoized(self, N, memo): if N <= 1: return memo.ch[0].get_words_of_length(N) return Closure.get_words_of_length_memoized(self, N, memo) def limited(self, N): a = self[0].limited(N) b = KleeneClosure(self[0]).limited(N) return Concatenation(a, b) class EpsilonOrOne(Called): _name = '?' def apseq(self, ap): ap(Epsilon) self[0].apseq(ap) def get_words_of_length_memoized(self, N, memo): if N == 0: return [Epsilon] return memo.ch[0].get_words_of_length(N) def limited(self, N): x = self[0].limited(N) if x is not self[0]: self = self.__class__(x) return self def simplified(self, *a, **k): return simple_EpsilonOrOne(self[0].simplified(*a, **k)) def unionsplitted(self): return [Epsilon] + list(self[0].unionsplitted()) def simple_EpsilonOrOne(x): # (a+)? -> a* if x._name == '+': return simple_KleeneClosure(x) # (a*)? -> a* if x._name == '*': return x return EpsilonOrOne(x) class RegularSystem: def __init__(self, table, Start, final_states): self.table = table self.Start = Start self.Final = '358f0eca5c34bacdfbf6a8ac0ccf84bc' self.final_states = final_states def pp(self): def statename(state): try: name = self.names[state] except KeyError: name = str(state) return name def transname(trans): name = trans.simulform() if trans._priority > 1: name = '(%s)' % (name,) return name self.setup_names() X = self.X xs = [self.Start]+self.order xs.append(self.Final) for Xk in xs: if Xk not in X: continue print('%3s = ' % (statename(Xk),), end=' ') Tk = X[Xk] es = [] for Xj in xs: if Xj in Tk: es.append('%s %s' % (transname(Tk[Xj]), statename(Xj))) if es: print(' | '.join(es)) else: print() def setup_equations(self): table = self.table final_states = self.final_states Final = self.Final self.X = X = {Final: {}} for Xi, transitions in list(table.items()): X[Xi] = Ti = {} for (symbol, Xj) in list(transitions.items()): Ti.setdefault(Xj, []).append(Single(symbol)) for Xj, Aij in list(Ti.items()): if len(Aij) > 1: Aij.sort() Aij = Union(*Aij) else: Aij = Aij[0] Ti[Xj] = Aij if Xi in final_states: Ti[Final] = Epsilon def setup_order(self): def dists(X, start): i = 0 S = {start: i} news = [start] while news: oldnews = news news = [] i += 1 for s in oldnews: if s not in X: continue for t in X[s]: if t not in S: news.append(t) S[t] = i return S def start_distance(x): return start_dists[x] def sumt(f): memo = {} def g(x): if x in memo: return memo[x] s = 0.0 for y in X[x]: s += f(y) memo[x] = s return s return g def cmp3(x, y): # Comparison for the sorting of equation solving order # First in list = solved last if x is y: return 0 # Equations with more terms are resolved later c = len(X[y]) - len(X[x]) if c: return c # The equations with terms more distant from start node will be resolved earlier i = 0 while i < 10: # 4 was enough with tests so far at Feb 24 2005 try: f = sumdists[i] except IndexError: f = sumt(sumdists[i-1]) sumdists.append(f) c = f(x) - f(y) if c: return c i += 1 return (x > y) - (x < y) sumdists = [start_distance] X = self.X Start = self.Start Final = self.Final start_dists = dists(X, Start) order = [x for x in start_dists if x is not Start and x is not Final] order.sort(key=functools.cmp_to_key(cmp3)) self.order = order def setup_names(self): try: self.order except AttributeError: self.setup_order() self.names = {} self.names[self.Start] = 'X0' for i, s in enumerate(self.order): self.names[s] = 'X%d' % (i+1) self.names[self.Final] = 'Final' def solve(self): # Set up equation system self.setup_equations() self.setup_order() X = self.X Start = self.Start Final = self.Final todo = list(self.order) # Solve equation system while todo: Xk = todo.pop() Tk = X[Xk] if Xk in Tk: # Recursive equation # Eliminate Akk Xk, using Adler's theorem # Given: # Xk = Ak0 X0 | ... Akk Xk |.. Akn Xkn # we get: # Xk = Akk* (Ak0 X0 | ... <no Xk> ... | Akn Xn) # which we evaluate to: # Xk = Bk0 X0 | ... Bkn Xn # where coefficients get the new values # Bki := Akk* Aki Akk = Tk[Xk] del Tk[Xk] AkkStar = Akk('*') for Xi, Aki in list(Tk.items()): Bki = AkkStar + Aki Tk[Xi] = Bki # Substitute Xk in each other equation in X # containing Xk, except eqv. Xk itself, which will not be used any more.. del X[Xk] for Xj, Tj in list(X.items()): Bjk = Tj.get(Xk) if Bjk is None: continue del Tj[Xk] for Xji, Tk_Xji in list(Tk.items()): Cji = (Bjk + Tk_Xji) Bji = Tj.get(Xji) if Bji is not None: Cji = Bji | Cji Tj[Xji] = Cji # The equation system is now solved # The result is in Final term of Start equation return X[Start][Final] Nothing = Union() def SolveFSA(fsa): RS = RegularSystem(fsa.table, fsa.start_state, fsa.final_states) return RS.solve()