%PDF- %PDF-
Direktori : /proc/thread-self/root/proc/self/root/proc/thread-self/root/usr/include/OpenEXR/ |
Current File : //proc/thread-self/root/proc/self/root/proc/thread-self/root/usr/include/OpenEXR/ImathLineAlgo.h |
/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHLINEALGO_H #define INCLUDED_IMATHLINEALGO_H //------------------------------------------------------------------ // // This file contains algorithms applied to or in conjunction // with lines (Imath::Line). These algorithms may require // more headers to compile. The assumption made is that these // functions are called much less often than the basic line // functions or these functions require more support classes // // Contains: // // bool closestPoints(const Line<T>& line1, // const Line<T>& line2, // Vec3<T>& point1, // Vec3<T>& point2) // // bool intersect( const Line3<T> &line, // const Vec3<T> &v0, // const Vec3<T> &v1, // const Vec3<T> &v2, // Vec3<T> &pt, // Vec3<T> &barycentric, // bool &front) // // V3f // closestVertex(const Vec3<T> &v0, // const Vec3<T> &v1, // const Vec3<T> &v2, // const Line3<T> &l) // // V3f // rotatePoint(const Vec3<T> p, Line3<T> l, float angle) // //------------------------------------------------------------------ #include "ImathLine.h" #include "ImathVecAlgo.h" #include "ImathFun.h" #include "ImathNamespace.h" IMATH_INTERNAL_NAMESPACE_HEADER_ENTER template <class T> bool closestPoints (const Line3<T>& line1, const Line3<T>& line2, Vec3<T>& point1, Vec3<T>& point2) { // // Compute point1 and point2 such that point1 is on line1, point2 // is on line2 and the distance between point1 and point2 is minimal. // This function returns true if point1 and point2 can be computed, // or false if line1 and line2 are parallel or nearly parallel. // This function assumes that line1.dir and line2.dir are normalized. // Vec3<T> w = line1.pos - line2.pos; T d1w = line1.dir ^ w; T d2w = line2.dir ^ w; T d1d2 = line1.dir ^ line2.dir; T n1 = d1d2 * d2w - d1w; T n2 = d2w - d1d2 * d1w; T d = 1 - d1d2 * d1d2; T absD = abs (d); if ((absD > 1) || (abs (n1) < limits<T>::max() * absD && abs (n2) < limits<T>::max() * absD)) { point1 = line1 (n1 / d); point2 = line2 (n2 / d); return true; } else { return false; } } template <class T> bool intersect (const Line3<T> &line, const Vec3<T> &v0, const Vec3<T> &v1, const Vec3<T> &v2, Vec3<T> &pt, Vec3<T> &barycentric, bool &front) { // // Given a line and a triangle (v0, v1, v2), the intersect() function // finds the intersection of the line and the plane that contains the // triangle. // // If the intersection point cannot be computed, either because the // line and the triangle's plane are nearly parallel or because the // triangle's area is very small, intersect() returns false. // // If the intersection point is outside the triangle, intersect // returns false. // // If the intersection point, pt, is inside the triangle, intersect() // computes a front-facing flag and the barycentric coordinates of // the intersection point, and returns true. // // The front-facing flag is true if the dot product of the triangle's // normal, (v2-v1)%(v1-v0), and the line's direction is negative. // // The barycentric coordinates have the following property: // // pt = v0 * barycentric.x + v1 * barycentric.y + v2 * barycentric.z // Vec3<T> edge0 = v1 - v0; Vec3<T> edge1 = v2 - v1; Vec3<T> normal = edge1 % edge0; T l = normal.length(); if (l != 0) normal /= l; else return false; // zero-area triangle // // d is the distance of line.pos from the plane that contains the triangle. // The intersection point is at line.pos + (d/nd) * line.dir. // T d = normal ^ (v0 - line.pos); T nd = normal ^ line.dir; if (abs (nd) > 1 || abs (d) < limits<T>::max() * abs (nd)) pt = line (d / nd); else return false; // line and plane are nearly parallel // // Compute the barycentric coordinates of the intersection point. // The intersection is inside the triangle if all three barycentric // coordinates are between zero and one. // { Vec3<T> en = edge0.normalized(); Vec3<T> a = pt - v0; Vec3<T> b = v2 - v0; Vec3<T> c = (a - en * (en ^ a)); Vec3<T> d = (b - en * (en ^ b)); T e = c ^ d; T f = d ^ d; if (e >= 0 && e <= f) barycentric.z = e / f; else return false; // outside } { Vec3<T> en = edge1.normalized(); Vec3<T> a = pt - v1; Vec3<T> b = v0 - v1; Vec3<T> c = (a - en * (en ^ a)); Vec3<T> d = (b - en * (en ^ b)); T e = c ^ d; T f = d ^ d; if (e >= 0 && e <= f) barycentric.x = e / f; else return false; // outside } barycentric.y = 1 - barycentric.x - barycentric.z; if (barycentric.y < 0) return false; // outside front = ((line.dir ^ normal) < 0); return true; } template <class T> Vec3<T> closestVertex (const Vec3<T> &v0, const Vec3<T> &v1, const Vec3<T> &v2, const Line3<T> &l) { Vec3<T> nearest = v0; T neardot = (v0 - l.closestPointTo(v0)).length2(); T tmp = (v1 - l.closestPointTo(v1)).length2(); if (tmp < neardot) { neardot = tmp; nearest = v1; } tmp = (v2 - l.closestPointTo(v2)).length2(); if (tmp < neardot) { neardot = tmp; nearest = v2; } return nearest; } template <class T> Vec3<T> rotatePoint (const Vec3<T> p, Line3<T> l, T angle) { // // Rotate the point p around the line l by the given angle. // // // Form a coordinate frame with <x,y,a>. The rotation is the in xy // plane. // Vec3<T> q = l.closestPointTo(p); Vec3<T> x = p - q; T radius = x.length(); x.normalize(); Vec3<T> y = (x % l.dir).normalize(); T cosangle = Math<T>::cos(angle); T sinangle = Math<T>::sin(angle); Vec3<T> r = q + x * radius * cosangle + y * radius * sinangle; return r; } IMATH_INTERNAL_NAMESPACE_HEADER_EXIT #endif // INCLUDED_IMATHLINEALGO_H