%PDF- %PDF-
Direktori : /proc/thread-self/root/proc/self/root/proc/thread-self/root/usr/include/asm/ |
Current File : //proc/thread-self/root/proc/self/root/proc/thread-self/root/usr/include/asm/bootparam.h |
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ #ifndef _ASM_X86_BOOTPARAM_H #define _ASM_X86_BOOTPARAM_H /* setup_data types */ #define SETUP_NONE 0 #define SETUP_E820_EXT 1 #define SETUP_DTB 2 #define SETUP_PCI 3 #define SETUP_EFI 4 #define SETUP_APPLE_PROPERTIES 5 #define SETUP_JAILHOUSE 6 #define SETUP_CC_BLOB 7 /* ram_size flags */ #define RAMDISK_IMAGE_START_MASK 0x07FF #define RAMDISK_PROMPT_FLAG 0x8000 #define RAMDISK_LOAD_FLAG 0x4000 /* loadflags */ #define LOADED_HIGH (1<<0) #define KASLR_FLAG (1<<1) #define QUIET_FLAG (1<<5) #define KEEP_SEGMENTS (1<<6) #define CAN_USE_HEAP (1<<7) /* xloadflags */ #define XLF_KERNEL_64 (1<<0) #define XLF_CAN_BE_LOADED_ABOVE_4G (1<<1) #define XLF_EFI_HANDOVER_32 (1<<2) #define XLF_EFI_HANDOVER_64 (1<<3) #define XLF_EFI_KEXEC (1<<4) #ifndef __ASSEMBLY__ #include <linux/types.h> #include <linux/screen_info.h> #include <linux/apm_bios.h> #include <linux/edd.h> #include <asm/ist.h> #include <video/edid.h> /* extensible setup data list node */ struct setup_data { __u64 next; __u32 type; __u32 len; __u8 data[0]; }; struct setup_header { __u8 setup_sects; __u16 root_flags; __u32 syssize; __u16 ram_size; __u16 vid_mode; __u16 root_dev; __u16 boot_flag; __u16 jump; __u32 header; __u16 version; __u32 realmode_swtch; __u16 start_sys_seg; __u16 kernel_version; __u8 type_of_loader; __u8 loadflags; __u16 setup_move_size; __u32 code32_start; __u32 ramdisk_image; __u32 ramdisk_size; __u32 bootsect_kludge; __u16 heap_end_ptr; __u8 ext_loader_ver; __u8 ext_loader_type; __u32 cmd_line_ptr; __u32 initrd_addr_max; __u32 kernel_alignment; __u8 relocatable_kernel; __u8 min_alignment; __u16 xloadflags; __u32 cmdline_size; __u32 hardware_subarch; __u64 hardware_subarch_data; __u32 payload_offset; __u32 payload_length; __u64 setup_data; __u64 pref_address; __u32 init_size; __u32 handover_offset; } __attribute__((packed)); struct sys_desc_table { __u16 length; __u8 table[14]; }; /* Gleaned from OFW's set-parameters in cpu/x86/pc/linux.fth */ struct olpc_ofw_header { __u32 ofw_magic; /* OFW signature */ __u32 ofw_version; __u32 cif_handler; /* callback into OFW */ __u32 irq_desc_table; } __attribute__((packed)); struct efi_info { __u32 efi_loader_signature; __u32 efi_systab; __u32 efi_memdesc_size; __u32 efi_memdesc_version; __u32 efi_memmap; __u32 efi_memmap_size; __u32 efi_systab_hi; __u32 efi_memmap_hi; }; /* * This is the maximum number of entries in struct boot_params::e820_table * (the zeropage), which is part of the x86 boot protocol ABI: */ #define E820_MAX_ENTRIES_ZEROPAGE 128 /* * The E820 memory region entry of the boot protocol ABI: */ struct boot_e820_entry { __u64 addr; __u64 size; __u32 type; } __attribute__((packed)); /* * Smallest compatible version of jailhouse_setup_data required by this kernel. */ #define JAILHOUSE_SETUP_REQUIRED_VERSION 1 /* * The boot loader is passing platform information via this Jailhouse-specific * setup data structure. */ struct jailhouse_setup_data { __u16 version; __u16 compatible_version; __u16 pm_timer_address; __u16 num_cpus; __u64 pci_mmconfig_base; __u32 tsc_khz; __u32 apic_khz; __u8 standard_ioapic; __u8 cpu_ids[255]; } __attribute__((packed)); /* The so-called "zeropage" */ struct boot_params { struct screen_info screen_info; /* 0x000 */ struct apm_bios_info apm_bios_info; /* 0x040 */ __u8 _pad2[4]; /* 0x054 */ __u64 tboot_addr; /* 0x058 */ struct ist_info ist_info; /* 0x060 */ __u64 acpi_rsdp_addr; /* 0x070 */ __u8 _pad3[8]; /* 0x078 */ __u8 hd0_info[16]; /* obsolete! */ /* 0x080 */ __u8 hd1_info[16]; /* obsolete! */ /* 0x090 */ struct sys_desc_table sys_desc_table; /* obsolete! */ /* 0x0a0 */ struct olpc_ofw_header olpc_ofw_header; /* 0x0b0 */ __u32 ext_ramdisk_image; /* 0x0c0 */ __u32 ext_ramdisk_size; /* 0x0c4 */ __u32 ext_cmd_line_ptr; /* 0x0c8 */ __u8 _pad4[112]; /* 0x0cc */ __u32 cc_blob_address; /* 0x13c */ struct edid_info edid_info; /* 0x140 */ struct efi_info efi_info; /* 0x1c0 */ __u32 alt_mem_k; /* 0x1e0 */ __u32 scratch; /* Scratch field! */ /* 0x1e4 */ __u8 e820_entries; /* 0x1e8 */ __u8 eddbuf_entries; /* 0x1e9 */ __u8 edd_mbr_sig_buf_entries; /* 0x1ea */ __u8 kbd_status; /* 0x1eb */ __u8 secure_boot; /* 0x1ec */ __u8 _pad5[2]; /* 0x1ed */ /* * The sentinel is set to a nonzero value (0xff) in header.S. * * A bootloader is supposed to only take setup_header and put * it into a clean boot_params buffer. If it turns out that * it is clumsy or too generous with the buffer, it most * probably will pick up the sentinel variable too. The fact * that this variable then is still 0xff will let kernel * know that some variables in boot_params are invalid and * kernel should zero out certain portions of boot_params. */ __u8 sentinel; /* 0x1ef */ __u8 _pad6[1]; /* 0x1f0 */ struct setup_header hdr; /* setup header */ /* 0x1f1 */ __u8 _pad7[0x290-0x1f1-sizeof(struct setup_header)]; __u32 edd_mbr_sig_buffer[EDD_MBR_SIG_MAX]; /* 0x290 */ struct boot_e820_entry e820_table[E820_MAX_ENTRIES_ZEROPAGE]; /* 0x2d0 */ __u8 _pad8[48]; /* 0xcd0 */ struct edd_info eddbuf[EDDMAXNR]; /* 0xd00 */ __u8 _pad9[276]; /* 0xeec */ } __attribute__((packed)); /** * enum x86_hardware_subarch - x86 hardware subarchitecture * * The x86 hardware_subarch and hardware_subarch_data were added as of the x86 * boot protocol 2.07 to help distinguish and support custom x86 boot * sequences. This enum represents accepted values for the x86 * hardware_subarch. Custom x86 boot sequences (not X86_SUBARCH_PC) do not * have or simply *cannot* make use of natural stubs like BIOS or EFI, the * hardware_subarch can be used on the Linux entry path to revector to a * subarchitecture stub when needed. This subarchitecture stub can be used to * set up Linux boot parameters or for special care to account for nonstandard * handling of page tables. * * These enums should only ever be used by x86 code, and the code that uses * it should be well contained and compartamentalized. * * KVM and Xen HVM do not have a subarch as these are expected to follow * standard x86 boot entries. If there is a genuine need for "hypervisor" type * that should be considered separately in the future. Future guest types * should seriously consider working with standard x86 boot stubs such as * the BIOS or EFI boot stubs. * * WARNING: this enum is only used for legacy hacks, for platform features that * are not easily enumerated or discoverable. You should not ever use * this for new features. * * @X86_SUBARCH_PC: Should be used if the hardware is enumerable using standard * PC mechanisms (PCI, ACPI) and doesn't need a special boot flow. * @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest, deprecated * @X86_SUBARCH_XEN: Used for Xen guest types which follow the PV boot path, * which start at __asm__ startup_xen() entry point and later jump to the C * xen_start_kernel() entry point. Both domU and dom0 type of guests are * currently supportd through this PV boot path. * @X86_SUBARCH_INTEL_MID: Used for Intel MID (Mobile Internet Device) platform * systems which do not have the PCI legacy interfaces. * @X86_SUBARCH_CE4100: Used for Intel CE media processor (CE4100) SoC for * for settop boxes and media devices, the use of a subarch for CE4100 * is more of a hack... */ enum x86_hardware_subarch { X86_SUBARCH_PC = 0, X86_SUBARCH_LGUEST, X86_SUBARCH_XEN, X86_SUBARCH_INTEL_MID, X86_SUBARCH_CE4100, X86_NR_SUBARCHS, }; #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_BOOTPARAM_H */