%PDF- %PDF-
Mini Shell

Mini Shell

Direktori : /proc/thread-self/root/proc/thread-self/root/proc/thread-self/root/lib64/perl5/CORE/
Upload File :
Create Path :
Current File : //proc/thread-self/root/proc/thread-self/root/proc/thread-self/root/lib64/perl5/CORE/utf8.h

/*    utf8.h
 *
 * This file contains definitions for use with the UTF-8 encoding.  It
 * actually also works with the variant UTF-8 encoding called UTF-EBCDIC, and
 * hides almost all of the differences between these from the caller.  In other
 * words, someone should #include this file, and if the code is being compiled
 * on an EBCDIC platform, things should mostly just work.
 *
 *    Copyright (C) 2000, 2001, 2002, 2005, 2006, 2007, 2009,
 *    2010, 2011 by Larry Wall and others
 *
 *    You may distribute under the terms of either the GNU General Public
 *    License or the Artistic License, as specified in the README file.
 *
 */

#ifndef H_UTF8      /* Guard against recursive inclusion */
#define H_UTF8 1

/* Use UTF-8 as the default script encoding?
 * Turning this on will break scripts having non-UTF-8 binary
 * data (such as Latin-1) in string literals. */
#ifdef USE_UTF8_SCRIPTS
#    define USE_UTF8_IN_NAMES (!IN_BYTES)
#else
#    define USE_UTF8_IN_NAMES (PL_hints & HINT_UTF8)
#endif

#include "regcharclass.h"
#include "unicode_constants.h"

/* For to_utf8_fold_flags, q.v. */
#define FOLD_FLAGS_LOCALE       0x1
#define FOLD_FLAGS_FULL         0x2
#define FOLD_FLAGS_NOMIX_ASCII  0x4

/* For _core_swash_init(), internal core use only */
#define _CORE_SWASH_INIT_USER_DEFINED_PROPERTY 0x1
#define _CORE_SWASH_INIT_RETURN_IF_UNDEF       0x2
#define _CORE_SWASH_INIT_ACCEPT_INVLIST        0x4

/*
=head1 Unicode Support
L<perlguts/Unicode Support> has an introduction to this API.

See also L</Character classification>,
and L</Character case changing>.
Various functions outside this section also work specially with Unicode.
Search for the string "utf8" in this document.

=for apidoc is_ascii_string

This is a misleadingly-named synonym for L</is_utf8_invariant_string>.
On ASCII-ish platforms, the name isn't misleading: the ASCII-range characters
are exactly the UTF-8 invariants.  But EBCDIC machines have more invariants
than just the ASCII characters, so C<is_utf8_invariant_string> is preferred.

=for apidoc is_invariant_string

This is a somewhat misleadingly-named synonym for L</is_utf8_invariant_string>.
C<is_utf8_invariant_string> is preferred, as it indicates under what conditions
the string is invariant.

=cut
*/
#define is_ascii_string(s, len)     is_utf8_invariant_string(s, len)
#define is_invariant_string(s, len) is_utf8_invariant_string(s, len)

#define uvchr_to_utf8(a,b)          uvchr_to_utf8_flags(a,b,0)
#define uvchr_to_utf8_flags(d,uv,flags)                                        \
                            uvoffuni_to_utf8_flags(d,NATIVE_TO_UNI(uv),flags)
#define utf8_to_uvchr_buf(s, e, lenp)                                          \
                     utf8n_to_uvchr(s, (U8*)(e) - (U8*)(s), lenp,              \
                                    ckWARN_d(WARN_UTF8) ? 0 : UTF8_ALLOW_ANY)
#define utf8n_to_uvchr(s, len, lenp, flags)                                    \
                                utf8n_to_uvchr_error(s, len, lenp, flags, 0)

#define to_uni_fold(c, p, lenp) _to_uni_fold_flags(c, p, lenp, FOLD_FLAGS_FULL)

#define to_utf8_fold(s, r, lenr)                                                \
    _to_utf8_fold_flags (s, NULL, r, lenr, FOLD_FLAGS_FULL, __FILE__, __LINE__)
#define to_utf8_lower(s, r, lenr)                                               \
                  _to_utf8_lower_flags(s, NULL, r ,lenr, 0, __FILE__, __LINE__)
#define to_utf8_upper(s, r, lenr)                                               \
                  _to_utf8_upper_flags(s, NULL, r, lenr, 0, __FILE__, __LINE__)
#define to_utf8_title(s, r, lenr)                                               \
                  _to_utf8_title_flags(s, NULL, r, lenr ,0, __FILE__, __LINE__)

#define foldEQ_utf8(s1, pe1, l1, u1, s2, pe2, l2, u2) \
		    foldEQ_utf8_flags(s1, pe1, l1, u1, s2, pe2, l2, u2, 0)
#define FOLDEQ_UTF8_NOMIX_ASCII   (1 << 0)
#define FOLDEQ_LOCALE             (1 << 1)
#define FOLDEQ_S1_ALREADY_FOLDED  (1 << 2)
#define FOLDEQ_S2_ALREADY_FOLDED  (1 << 3)
#define FOLDEQ_S1_FOLDS_SANE      (1 << 4)
#define FOLDEQ_S2_FOLDS_SANE      (1 << 5)

#define ibcmp_utf8(s1, pe1, l1, u1, s2, pe2, l2, u2) \
		    cBOOL(! foldEQ_utf8(s1, pe1, l1, u1, s2, pe2, l2, u2))

#ifdef EBCDIC
/* The equivalent of these macros but implementing UTF-EBCDIC
   are in the following header file:
 */

#include "utfebcdic.h"

#else	/* ! EBCDIC */
START_EXTERN_C

/* How wide can a single UTF-8 encoded character become in bytes. */
/* NOTE: Strictly speaking Perl's UTF-8 should not be called UTF-8 since UTF-8
 * is an encoding of Unicode, and Unicode's upper limit, 0x10FFFF, can be
 * expressed with 4 bytes.  However, Perl thinks of UTF-8 as a way to encode
 * non-negative integers in a binary format, even those above Unicode */
#define UTF8_MAXBYTES 13

#ifdef DOINIT
EXTCONST unsigned char PL_utf8skip[] = {
/* 0x00 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
/* 0x10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
/* 0x20 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
/* 0x30 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
/* 0x40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
/* 0x50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
/* 0x60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
/* 0x70 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ascii */
/* 0x80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
/* 0x90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
/* 0xA0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
/* 0xB0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* bogus: continuation byte */
/* 0xC0 */ 2,2,				    /* overlong */
/* 0xC2 */     2,2,2,2,2,2,2,2,2,2,2,2,2,2, /* U+0080 to U+03FF */
/* 0xD0 */ 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, /* U+0400 to U+07FF */
/* 0xE0 */ 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, /* U+0800 to U+FFFF */
/* 0xF0 */ 4,4,4,4,4,4,4,4,5,5,5,5,6,6,	    /* above BMP to 2**31 - 1 */
           /* Perl extended (never was official UTF-8).  Up to 36 bit */
/* 0xFE */                             7,
           /* More extended, Up to 72 bits (64-bit + reserved) */
/* 0xFF */                               UTF8_MAXBYTES
};
#else
EXTCONST unsigned char PL_utf8skip[];
#endif

END_EXTERN_C

#if defined(_MSC_VER) && _MSC_VER < 1400
/* older MSVC versions have a smallish macro buffer */
#define PERL_SMALL_MACRO_BUFFER
#endif

/* Native character to/from iso-8859-1.  Are the identity functions on ASCII
 * platforms */
#ifdef PERL_SMALL_MACRO_BUFFER
#define NATIVE_TO_LATIN1(ch)     ((U8)(ch))
#define LATIN1_TO_NATIVE(ch)     ((U8)(ch))
#else
#define NATIVE_TO_LATIN1(ch)     (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
#define LATIN1_TO_NATIVE(ch)     (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
#endif

/* I8 is an intermediate version of UTF-8 used only in UTF-EBCDIC.  We thus
 * consider it to be identical to UTF-8 on ASCII platforms.  Strictly speaking
 * UTF-8 and UTF-EBCDIC are two different things, but we often conflate them
 * because they are 8-bit encodings that serve the same purpose in Perl, and
 * rarely do we need to distinguish them.  The term "NATIVE_UTF8" applies to
 * whichever one is applicable on the current platform */
#ifdef PERL_SMALL_MACRO_BUFFER
#define NATIVE_UTF8_TO_I8(ch) ((U8) (ch))
#define I8_TO_NATIVE_UTF8(ch) ((U8) (ch))
#else
#define NATIVE_UTF8_TO_I8(ch) (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
#define I8_TO_NATIVE_UTF8(ch) (__ASSERT_(FITS_IN_8_BITS(ch)) ((U8) (ch)))
#endif

/* Transforms in wide UV chars */
#define UNI_TO_NATIVE(ch)        ((UV) (ch))
#define NATIVE_TO_UNI(ch)        ((UV) (ch))

/*

 The following table is from Unicode 3.2, plus the Perl extensions for above
 U+10FFFF

 Code Points		1st Byte  2nd Byte  3rd    4th     5th     6th       7th   8th-13th

   U+0000..U+007F	00..7F
   U+0080..U+07FF     * C2..DF    80..BF
   U+0800..U+0FFF	E0      * A0..BF  80..BF
   U+1000..U+CFFF       E1..EC    80..BF  80..BF
   U+D000..U+D7FF       ED        80..9F  80..BF
   U+D800..U+DFFF       ED        A0..BF  80..BF  (surrogates)
   U+E000..U+FFFF       EE..EF    80..BF  80..BF
  U+10000..U+3FFFF	F0      * 90..BF  80..BF  80..BF
  U+40000..U+FFFFF	F1..F3    80..BF  80..BF  80..BF
 U+100000..U+10FFFF	F4        80..8F  80..BF  80..BF
    Below are above-Unicode code points
 U+110000..U+13FFFF	F4        90..BF  80..BF  80..BF
 U+110000..U+1FFFFF	F5..F7    80..BF  80..BF  80..BF
 U+200000..U+FFFFFF     F8      * 88..BF  80..BF  80..BF  80..BF
U+1000000..U+3FFFFFF    F9..FB    80..BF  80..BF  80..BF  80..BF
U+4000000..U+3FFFFFFF    FC     * 84..BF  80..BF  80..BF  80..BF  80..BF
U+40000000..U+7FFFFFFF   FD       80..BF  80..BF  80..BF  80..BF  80..BF
U+80000000..U+FFFFFFFFF  FE     * 82..BF  80..BF  80..BF  80..BF  80..BF    80..BF
U+1000000000..           FF       80..BF  80..BF  80..BF  80..BF  80..BF  * 81..BF  80..BF

Note the gaps before several of the byte entries above marked by '*'.  These are
caused by legal UTF-8 avoiding non-shortest encodings: it is technically
possible to UTF-8-encode a single code point in different ways, but that is
explicitly forbidden, and the shortest possible encoding should always be used
(and that is what Perl does).  The non-shortest ones are called 'overlongs'.

 */

/*
 Another way to look at it, as bits:

                  Code Points      1st Byte   2nd Byte   3rd Byte   4th Byte

                        0aaa aaaa  0aaa aaaa
              0000 0bbb bbaa aaaa  110b bbbb  10aa aaaa
              cccc bbbb bbaa aaaa  1110 cccc  10bb bbbb  10aa aaaa
 00 000d ddcc cccc bbbb bbaa aaaa  1111 0ddd  10cc cccc  10bb bbbb  10aa aaaa

As you can see, the continuation bytes all begin with C<10>, and the
leading bits of the start byte tell how many bytes there are in the
encoded character.

Perl's extended UTF-8 means we can have start bytes up through FF, though any
beginning with FF yields a code point that is too large for 32-bit ASCII
platforms.  FF signals to use 13 bytes for the encoded character.  This breaks
the paradigm that the number of leading bits gives how many total bytes there
are in the character.

*/

/* Anything larger than this will overflow the word if it were converted into a UV */
#if defined(UV_IS_QUAD)
#   define HIGHEST_REPRESENTABLE_UTF8  "\xFF\x80\x8F\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
#else
#   define HIGHEST_REPRESENTABLE_UTF8  "\xFE\x83\xBF\xBF\xBF\xBF\xBF"
#endif

/* Is the representation of the Unicode code point 'cp' the same regardless of
 * being encoded in UTF-8 or not? */
#define OFFUNI_IS_INVARIANT(cp)     isASCII(cp)

/*
=for apidoc Am|bool|UVCHR_IS_INVARIANT|UV cp

Evaluates to 1 if the representation of code point C<cp> is the same whether or
not it is encoded in UTF-8; otherwise evaluates to 0.  UTF-8 invariant
characters can be copied as-is when converting to/from UTF-8, saving time.
C<cp> is Unicode if above 255; otherwise is platform-native.

=cut
 */

#define UVCHR_IS_INVARIANT(cp)      OFFUNI_IS_INVARIANT(cp)

/* This defines the bits that are to be in the continuation bytes of a multi-byte
 * UTF-8 encoded character that mark it is a continuation byte. */
#define UTF_CONTINUATION_MARK		0x80

/* Misleadingly named: is the UTF8-encoded byte 'c' part of a variant sequence
 * in UTF-8?  This is the inverse of UTF8_IS_INVARIANT.  The |0 makes sure this
 * isn't mistakenly called with a ptr argument */
#define UTF8_IS_CONTINUED(c)        (((U8)((c) | 0)) &  UTF_CONTINUATION_MARK)

/* Is the byte 'c' the first byte of a multi-byte UTF8-8 encoded sequence?
 * This doesn't catch invariants (they are single-byte).  It also excludes the
 * illegal overlong sequences that begin with C0 and C1.  The |0 makes sure
 * this isn't mistakenly called with a ptr argument */
#define UTF8_IS_START(c)            (((U8)((c) | 0)) >= 0xc2)

/* For use in UTF8_IS_CONTINUATION() below */
#define UTF_IS_CONTINUATION_MASK    0xC0

/* Is the byte 'c' part of a multi-byte UTF8-8 encoded sequence, and not the
 * first byte thereof?  The |0 makes sure this isn't mistakenly called with a
 * ptr argument */
#define UTF8_IS_CONTINUATION(c)                                             \
    ((((U8)((c) | 0)) & UTF_IS_CONTINUATION_MASK) == UTF_CONTINUATION_MARK)

/* Is the UTF8-encoded byte 'c' the first byte of a two byte sequence?  Use
 * UTF8_IS_NEXT_CHAR_DOWNGRADEABLE() instead if the input isn't known to
 * be well-formed.  Masking with 0xfe allows the low bit to be 0 or 1; thus
 * this matches 0xc[23].  The |0 makes sure this isn't mistakenly called with a
 * ptr argument */
#define UTF8_IS_DOWNGRADEABLE_START(c)	((((U8)((c) | 0)) & 0xfe) == 0xc2)

/* Is the UTF8-encoded byte 'c' the first byte of a sequence of bytes that
 * represent a code point > 255?  The |0 makes sure this isn't mistakenly
 * called with a ptr argument */
#define UTF8_IS_ABOVE_LATIN1(c)     (((U8)((c) | 0)) >= 0xc4)

/* This is the number of low-order bits a continuation byte in a UTF-8 encoded
 * sequence contributes to the specification of the code point.  In the bit
 * maps above, you see that the first 2 bits are a constant '10', leaving 6 of
 * real information */
#define UTF_ACCUMULATION_SHIFT		6

/* ^? is defined to be DEL on ASCII systems.  See the definition of toCTRL()
 * for more */
#define QUESTION_MARK_CTRL  DEL_NATIVE

/* Surrogates, non-character code points and above-Unicode code points are
 * problematic in some contexts.  This allows code that needs to check for
 * those to to quickly exclude the vast majority of code points it will
 * encounter */
#define isUTF8_POSSIBLY_PROBLEMATIC(c) ((U8) c >= 0xED)

/* A helper macro for isUTF8_CHAR, so use that one instead of this.  This was
 * generated by regen/regcharclass.pl, and then moved here.  Then it was
 * hand-edited to add some LIKELY() calls, presuming that malformations are
 * unlikely.  The lines that generated it were then commented out.  This was
 * done because it takes on the order of 10 minutes to generate, and is never
 * going to change, unless the generated code is improved, and figuring out
 * the LIKELYs there would be hard.
 *
        UTF8_CHAR: Matches legal UTF-8 variant code points up through 0x1FFFFFF

	0x80 - 0x1FFFFF
*/
/*** GENERATED CODE ***/
#define is_UTF8_CHAR_utf8_no_length_checks(s)                               \
( ( 0xC2 <= ((const U8*)s)[0] && ((const U8*)s)[0] <= 0xDF ) ?                          \
    ( LIKELY( ( ((const U8*)s)[1] & 0xC0 ) == 0x80 ) ? 2 : 0 )                    \
: ( 0xE0 == ((const U8*)s)[0] ) ?                                                 \
    ( LIKELY( ( ( ((const U8*)s)[1] & 0xE0 ) == 0xA0 ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) ? 3 : 0 )\
: ( 0xE1 <= ((const U8*)s)[0] && ((const U8*)s)[0] <= 0xEF ) ?                          \
    ( LIKELY( ( ( ((const U8*)s)[1] & 0xC0 ) == 0x80 ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) ? 3 : 0 )\
: ( 0xF0 == ((const U8*)s)[0] ) ?                                                 \
    ( LIKELY( ( ( 0x90 <= ((const U8*)s)[1] && ((const U8*)s)[1] <= 0xBF ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) && ( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ) ? 4 : 0 )\
: ( ( ( ( 0xF1 <= ((const U8*)s)[0] && ((const U8*)s)[0] <= 0xF7 ) && LIKELY( ( ((const U8*)s)[1] & 0xC0 ) == 0x80 ) ) && LIKELY( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) && LIKELY( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ) ? 4 : 0 )

/* The above macro handles UTF-8 that has this start byte as the maximum */
#define _IS_UTF8_CHAR_HIGHEST_START_BYTE 0xF7

/* A helper macro for isSTRICT_UTF8_CHAR, so use that one instead of this.
 * Like is_UTF8_CHAR_utf8_no_length_checks(), this was moved here and LIKELYs
 * added manually.
 *
	STRICT_UTF8_CHAR: Matches legal Unicode UTF-8 variant code points, no
                          surrrogates nor non-character code points
*/
/*** GENERATED CODE ***/
#define is_STRICT_UTF8_CHAR_utf8_no_length_checks(s)                        \
( ( 0xC2 <= ((const U8*)s)[0] && ((const U8*)s)[0] <= 0xDF ) ?                          \
    ( LIKELY( ( ((const U8*)s)[1] & 0xC0 ) == 0x80 ) ? 2 : 0 )                          \
: ( 0xE0 == ((const U8*)s)[0] ) ?                                                 \
    ( LIKELY( ( ( ((const U8*)s)[1] & 0xE0 ) == 0xA0 ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) ? 3 : 0 )\
: ( ( 0xE1 <= ((const U8*)s)[0] && ((const U8*)s)[0] <= 0xEC ) || 0xEE == ((const U8*)s)[0] ) ?\
    ( ( ( ( ((const U8*)s)[1] & 0xC0 ) == 0x80 ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) ? 3 : 0 )\
: ( 0xED == ((const U8*)s)[0] ) ?                                                 \
    ( LIKELY( ( ( ((const U8*)s)[1] & 0xE0 ) == 0x80 ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) ? 3 : 0 )\
: ( 0xEF == ((const U8*)s)[0] ) ?                                                 \
    ( ( ( 0x80 <= ((const U8*)s)[1] && ((const U8*)s)[1] <= 0xB6 ) || ( 0xB8 <= ((const U8*)s)[1] && ((const U8*)s)[1] <= 0xBE ) ) ?\
	( LIKELY( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ? 3 : 0 )                      \
    : ( 0xB7 == ((const U8*)s)[1] ) ?                                             \
	( LIKELY( ( ((const U8*)s)[2] & 0xF0 ) == 0x80 || ( ((const U8*)s)[2] & 0xF0 ) == 0xB0 ) ? 3 : 0 )\
    : ( ( 0xBF == ((const U8*)s)[1] ) && ( 0x80 <= ((const U8*)s)[2] && ((const U8*)s)[2] <= 0xBD ) ) ? 3 : 0 )\
: ( 0xF0 == ((const U8*)s)[0] ) ?                                                 \
    ( ( ( 0x90 <= ((const U8*)s)[1] && ((const U8*)s)[1] <= 0x9E ) || ( 0xA0 <= ((const U8*)s)[1] && ((const U8*)s)[1] <= 0xAE ) || ( 0xB0 <= ((const U8*)s)[1] && ((const U8*)s)[1] <= 0xBE ) ) ?\
	( LIKELY( ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) && ( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ) ? 4 : 0 )\
    : ( ((const U8*)s)[1] == 0x9F || ( ( ((const U8*)s)[1] & 0xEF ) == 0xAF ) ) ?       \
	( ( 0x80 <= ((const U8*)s)[2] && ((const U8*)s)[2] <= 0xBE ) ?                  \
	    ( LIKELY( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ? 4 : 0 )                  \
	: LIKELY( ( 0xBF == ((const U8*)s)[2] ) && ( 0x80 <= ((const U8*)s)[3] && ((const U8*)s)[3] <= 0xBD ) ) ? 4 : 0 )\
    : 0 )                                                                   \
: ( 0xF1 <= ((const U8*)s)[0] && ((const U8*)s)[0] <= 0xF3 ) ?                          \
    ( ( ( ( ((const U8*)s)[1] & 0xC8 ) == 0x80 ) || ( ( ((const U8*)s)[1] & 0xCC ) == 0x88 ) || ( ( ((const U8*)s)[1] & 0xCE ) == 0x8C ) || ( ( ((const U8*)s)[1] & 0xCF ) == 0x8E ) ) ?\
	( LIKELY( ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) && ( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ) ? 4 : 0 )\
    : ( ( ((const U8*)s)[1] & 0xCF ) == 0x8F ) ?                                  \
	( ( 0x80 <= ((const U8*)s)[2] && ((const U8*)s)[2] <= 0xBE ) ?                  \
	    ( LIKELY( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ? 4 : 0 )                  \
	: LIKELY( ( 0xBF == ((const U8*)s)[2] ) && ( 0x80 <= ((const U8*)s)[3] && ((const U8*)s)[3] <= 0xBD ) ) ? 4 : 0 )\
    : 0 )                                                                   \
: ( 0xF4 == ((const U8*)s)[0] ) ?                                                 \
    ( ( 0x80 <= ((const U8*)s)[1] && ((const U8*)s)[1] <= 0x8E ) ?                      \
	( LIKELY( ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) && ( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ) ? 4 : 0 )\
    : ( 0x8F == ((const U8*)s)[1] ) ?                                             \
	( ( 0x80 <= ((const U8*)s)[2] && ((const U8*)s)[2] <= 0xBE ) ?                  \
	    ( LIKELY( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ? 4 : 0 )                  \
	: LIKELY( ( 0xBF == ((const U8*)s)[2] ) && ( 0x80 <= ((const U8*)s)[3] && ((const U8*)s)[3] <= 0xBD ) ) ? 4 : 0 )\
    : 0 )                                                                   \
: 0 )

/*  Similarly,
        C9_STRICT_UTF8_CHAR: Matches legal Unicode UTF-8 variant code
                                     points, no surrogates
	0x0080 - 0xD7FF
	0xE000 - 0x10FFFF
*/
/*** GENERATED CODE ***/
#define is_C9_STRICT_UTF8_CHAR_utf8_no_length_checks(s)                     \
( ( 0xC2 <= ((const U8*)s)[0] && ((const U8*)s)[0] <= 0xDF ) ?                          \
    ( LIKELY( ( ((const U8*)s)[1] & 0xC0 ) == 0x80 ) ? 2 : 0 )                    \
: ( 0xE0 == ((const U8*)s)[0] ) ?                                                 \
    ( LIKELY( ( ( ((const U8*)s)[1] & 0xE0 ) == 0xA0 ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) ? 3 : 0 )\
: ( ( 0xE1 <= ((const U8*)s)[0] && ((const U8*)s)[0] <= 0xEC ) || ( ((const U8*)s)[0] & 0xFE ) == 0xEE ) ?\
    ( LIKELY( ( ( ((const U8*)s)[1] & 0xC0 ) == 0x80 ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) ? 3 : 0 )\
: ( 0xED == ((const U8*)s)[0] ) ?                                                 \
    ( LIKELY( ( ( ((const U8*)s)[1] & 0xE0 ) == 0x80 ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) ? 3 : 0 )\
: ( 0xF0 == ((const U8*)s)[0] ) ?                                                 \
    ( LIKELY( ( ( 0x90 <= ((const U8*)s)[1] && ((const U8*)s)[1] <= 0xBF ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) && ( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ) ? 4 : 0 )\
: ( 0xF1 <= ((const U8*)s)[0] && ((const U8*)s)[0] <= 0xF3 ) ?                          \
    ( LIKELY( ( ( ( ((const U8*)s)[1] & 0xC0 ) == 0x80 ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) && ( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ) ? 4 : 0 )\
: LIKELY( ( ( ( 0xF4 == ((const U8*)s)[0] ) && ( ( ((const U8*)s)[1] & 0xF0 ) == 0x80 ) ) && ( ( ((const U8*)s)[2] & 0xC0 ) == 0x80 ) ) && ( ( ((const U8*)s)[3] & 0xC0 ) == 0x80 ) ) ? 4 : 0 )

#endif /* EBCDIC vs ASCII */

/* 2**UTF_ACCUMULATION_SHIFT - 1 */
#define UTF_CONTINUATION_MASK  ((U8) ((1U << UTF_ACCUMULATION_SHIFT) - 1))

/* Internal macro to be used only in this file to aid in constructing other
 * publicly accessible macros.
 * The number of bytes required to express this uv in UTF-8, for just those
 * uv's requiring 2 through 6 bytes, as these are common to all platforms and
 * word sizes.  The number of bytes needed is given by the number of leading 1
 * bits in the start byte.  There are 32 start bytes that have 2 initial 1 bits
 * (C0-DF); there are 16 that have 3 initial 1 bits (E0-EF); 8 that have 4
 * initial 1 bits (F0-F8); 4 that have 5 initial 1 bits (F9-FB), and 2 that
 * have 6 initial 1 bits (FC-FD).  The largest number a string of n bytes can
 * represent is       (the number of possible start bytes for 'n')
 *                  * (the number of possiblities for each start byte
 * The latter in turn is
 *                  2  ** (  (how many continuation bytes there are)
 *                         * (the number of bits of information each
 *                            continuation byte holds))
 *
 * If we were on a platform where we could use a fast find first set bit
 * instruction (or count leading zeros instruction) this could be replaced by
 * using that to find the log2 of the uv, and divide that by the number of bits
 * of information in each continuation byte, adjusting for large cases and how
 * much information is in a start byte for that length */
#define __COMMON_UNI_SKIP(uv)                                               \
          (UV) (uv) < (32 * (1U << (    UTF_ACCUMULATION_SHIFT))) ? 2 :     \
          (UV) (uv) < (16 * (1U << (2 * UTF_ACCUMULATION_SHIFT))) ? 3 :     \
          (UV) (uv) < ( 8 * (1U << (3 * UTF_ACCUMULATION_SHIFT))) ? 4 :     \
          (UV) (uv) < ( 4 * (1U << (4 * UTF_ACCUMULATION_SHIFT))) ? 5 :     \
          (UV) (uv) < ( 2 * (1U << (5 * UTF_ACCUMULATION_SHIFT))) ? 6 :

/* Internal macro to be used only in this file.
 * This adds to __COMMON_UNI_SKIP the details at this platform's upper range.
 * For any-sized EBCDIC platforms, or 64-bit ASCII ones, we need one more test
 * to see if just 7 bytes is needed, or if the maximum is needed.  For 32-bit
 * ASCII platforms, everything is representable by 7 bytes */
#if defined(UV_IS_QUAD) || defined(EBCDIC)
#   define __BASE_UNI_SKIP(uv) (__COMMON_UNI_SKIP(uv)                       \
     (UV) (uv) < ((UV) 1U << (6 * UTF_ACCUMULATION_SHIFT)) ? 7 : UTF8_MAXBYTES)
#else
#   define __BASE_UNI_SKIP(uv) (__COMMON_UNI_SKIP(uv) 7)
#endif

/* The next two macros use the base macro defined above, and add in the tests
 * at the low-end of the range, for just 1 byte, yielding complete macros,
 * publicly accessible. */

/* Input is a true Unicode (not-native) code point */
#define OFFUNISKIP(uv) (OFFUNI_IS_INVARIANT(uv) ? 1 : __BASE_UNI_SKIP(uv))

/*

=for apidoc Am|STRLEN|UVCHR_SKIP|UV cp
returns the number of bytes required to represent the code point C<cp> when
encoded as UTF-8.  C<cp> is a native (ASCII or EBCDIC) code point if less than
255; a Unicode code point otherwise.

=cut
 */
#define UVCHR_SKIP(uv) ( UVCHR_IS_INVARIANT(uv) ? 1 : __BASE_UNI_SKIP(uv))

/* The largest code point representable by two UTF-8 bytes on this platform.
 * As explained in the comments for __COMMON_UNI_SKIP, 32 start bytes with
 * UTF_ACCUMULATION_SHIFT bits of information each */
#define MAX_UTF8_TWO_BYTE (32 * (1U << UTF_ACCUMULATION_SHIFT) - 1)

/* The largest code point representable by two UTF-8 bytes on any platform that
 * Perl runs on.  This value is constrained by EBCDIC which has 5 bits per
 * continuation byte */
#define MAX_PORTABLE_UTF8_TWO_BYTE (32 * (1U << 5) - 1)

/* The maximum number of UTF-8 bytes a single Unicode character can
 * uppercase/lowercase/fold into.  Unicode guarantees that the maximum
 * expansion is UTF8_MAX_FOLD_CHAR_EXPAND characters, but any above-Unicode
 * code point will fold to itself, so we only have to look at the expansion of
 * the maximum Unicode code point.  But this number may be less than the space
 * occupied by a very large code point under Perl's extended UTF-8.  We have to
 * make it large enough to fit any single character.  (It turns out that ASCII
 * and EBCDIC differ in which is larger) */
#define UTF8_MAXBYTES_CASE	                                                \
        (UTF8_MAXBYTES >= (UTF8_MAX_FOLD_CHAR_EXPAND * OFFUNISKIP(0x10FFFF))    \
                           ? UTF8_MAXBYTES                                      \
                           : (UTF8_MAX_FOLD_CHAR_EXPAND * OFFUNISKIP(0x10FFFF)))

/* Rest of these are attributes of Unicode and perl's internals rather than the
 * encoding, or happen to be the same in both ASCII and EBCDIC (at least at
 * this level; the macros that some of these call may have different
 * definitions in the two encodings */

/* In domain restricted to ASCII, these may make more sense to the reader than
 * the ones with Latin1 in the name */
#define NATIVE_TO_ASCII(ch)      NATIVE_TO_LATIN1(ch)
#define ASCII_TO_NATIVE(ch)      LATIN1_TO_NATIVE(ch)

/* More or less misleadingly-named defines, retained for back compat */
#define NATIVE_TO_UTF(ch)        NATIVE_UTF8_TO_I8(ch)
#define NATIVE_TO_I8(ch)         NATIVE_UTF8_TO_I8(ch)
#define UTF_TO_NATIVE(ch)        I8_TO_NATIVE_UTF8(ch)
#define I8_TO_NATIVE(ch)         I8_TO_NATIVE_UTF8(ch)
#define NATIVE8_TO_UNI(ch)       NATIVE_TO_LATIN1(ch)

/* This defines the 1-bits that are to be in the first byte of a multi-byte
 * UTF-8 encoded character that mark it as a start byte and give the number of
 * bytes that comprise the character. 'len' is the number of bytes in the
 * multi-byte sequence. */
#define UTF_START_MARK(len) (((len) >  7) ? 0xFF : (0xFF & (0xFE << (7-(len)))))

/* Masks out the initial one bits in a start byte, leaving the real data ones.
 * Doesn't work on an invariant byte.  'len' is the number of bytes in the
 * multi-byte sequence that comprises the character. */
#define UTF_START_MASK(len) (((len) >= 7) ? 0x00 : (0x1F >> ((len)-2)))

/* Adds a UTF8 continuation byte 'new' of information to a running total code
 * point 'old' of all the continuation bytes so far.  This is designed to be
 * used in a loop to convert from UTF-8 to the code point represented.  Note
 * that this is asymmetric on EBCDIC platforms, in that the 'new' parameter is
 * the UTF-EBCDIC byte, whereas the 'old' parameter is a Unicode (not EBCDIC)
 * code point in process of being generated */
#define UTF8_ACCUMULATE(old, new) (((old) << UTF_ACCUMULATION_SHIFT)           \
                                   | ((NATIVE_UTF8_TO_I8((U8)new))             \
                                       & UTF_CONTINUATION_MASK))

/* This works in the face of malformed UTF-8. */
#define UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, e)                                 \
                                       (   UTF8_IS_DOWNGRADEABLE_START(*(s))  \
                                        && ( (e) - (s) > 1)                   \
                                        && UTF8_IS_CONTINUATION(*((s)+1)))

/* Number of bytes a code point occupies in UTF-8. */
#define NATIVE_SKIP(uv) UVCHR_SKIP(uv)

/* Most code which says UNISKIP is really thinking in terms of native code
 * points (0-255) plus all those beyond.  This is an imprecise term, but having
 * it means existing code continues to work.  For precision, use UVCHR_SKIP,
 * NATIVE_SKIP, or OFFUNISKIP */
#define UNISKIP(uv)   UVCHR_SKIP(uv)

/* Longer, but more accurate name */
#define UTF8_IS_ABOVE_LATIN1_START(c)     UTF8_IS_ABOVE_LATIN1(c)

/* Convert a UTF-8 variant Latin1 character to a native code point value.
 * Needs just one iteration of accumulate.  Should be used only if it is known
 * that the code point is < 256, and is not UTF-8 invariant.  Use the slower
 * but more general TWO_BYTE_UTF8_TO_NATIVE() which handles any code point
 * representable by two bytes (which turns out to be up through
 * MAX_PORTABLE_UTF8_TWO_BYTE).  The two parameters are:
 *  HI: a downgradable start byte;
 *  LO: continuation.
 * */
#define EIGHT_BIT_UTF8_TO_NATIVE(HI, LO)                                        \
    ( __ASSERT_(UTF8_IS_DOWNGRADEABLE_START(HI))                                \
      __ASSERT_(UTF8_IS_CONTINUATION(LO))                                       \
     LATIN1_TO_NATIVE(UTF8_ACCUMULATE((                                         \
                            NATIVE_UTF8_TO_I8(HI) & UTF_START_MASK(2)), (LO))))

/* Convert a two (not one) byte utf8 character to a native code point value.
 * Needs just one iteration of accumulate.  Should not be used unless it is
 * known that the two bytes are legal: 1) two-byte start, and 2) continuation.
 * Note that the result can be larger than 255 if the input character is not
 * downgradable */
#define TWO_BYTE_UTF8_TO_NATIVE(HI, LO) \
    ( __ASSERT_(PL_utf8skip[HI] == 2)                                           \
      __ASSERT_(UTF8_IS_CONTINUATION(LO))                                       \
     UNI_TO_NATIVE(UTF8_ACCUMULATE((NATIVE_UTF8_TO_I8(HI) & UTF_START_MASK(2)), \
                                   (LO))))

/* Should never be used, and be deprecated */
#define TWO_BYTE_UTF8_TO_UNI(HI, LO) NATIVE_TO_UNI(TWO_BYTE_UTF8_TO_NATIVE(HI, LO))

/*

=for apidoc Am|STRLEN|UTF8SKIP|char* s
returns the number of bytes in the UTF-8 encoded character whose first (perhaps
only) byte is pointed to by C<s>.

=cut
 */
#define UTF8SKIP(s)  PL_utf8skip[*(const U8*)(s)]
#define UTF8_SKIP(s) UTF8SKIP(s)

/* Most code that says 'UNI_' really means the native value for code points up
 * through 255 */
#define UNI_IS_INVARIANT(cp)   UVCHR_IS_INVARIANT(cp)

/*
=for apidoc Am|bool|UTF8_IS_INVARIANT|char c

Evaluates to 1 if the byte C<c> represents the same character when encoded in
UTF-8 as when not; otherwise evaluates to 0.  UTF-8 invariant characters can be
copied as-is when converting to/from UTF-8, saving time.

In spite of the name, this macro gives the correct result if the input string
from which C<c> comes is not encoded in UTF-8.

See C<L</UVCHR_IS_INVARIANT>> for checking if a UV is invariant.

=cut

The reason it works on both UTF-8 encoded strings and non-UTF-8 encoded, is
that it returns TRUE in each for the exact same set of bit patterns.  It is
valid on a subset of what UVCHR_IS_INVARIANT is valid on, so can just use that;
and the compiler should optimize out anything extraneous given the
implementation of the latter.  The |0 makes sure this isn't mistakenly called
with a ptr argument.
*/
#define UTF8_IS_INVARIANT(c)	UVCHR_IS_INVARIANT((c) | 0)

/* Like the above, but its name implies a non-UTF8 input, which as the comments
 * above show, doesn't matter as to its implementation */
#define NATIVE_BYTE_IS_INVARIANT(c)	UVCHR_IS_INVARIANT(c)

/* The macros in the next 4 sets are used to generate the two utf8 or utfebcdic
 * bytes from an ordinal that is known to fit into exactly two (not one) bytes;
 * it must be less than 0x3FF to work across both encodings. */

/* These two are helper macros for the other three sets, and should not be used
 * directly anywhere else.  'translate_function' is either NATIVE_TO_LATIN1
 * (which works for code points up through 0xFF) or NATIVE_TO_UNI which works
 * for any code point */
#define __BASE_TWO_BYTE_HI(c, translate_function)                               \
           (__ASSERT_(! UVCHR_IS_INVARIANT(c))                                  \
            I8_TO_NATIVE_UTF8((translate_function(c) >> UTF_ACCUMULATION_SHIFT) \
                              | UTF_START_MARK(2)))
#define __BASE_TWO_BYTE_LO(c, translate_function)                               \
             (__ASSERT_(! UVCHR_IS_INVARIANT(c))                                \
              I8_TO_NATIVE_UTF8((translate_function(c) & UTF_CONTINUATION_MASK) \
                                 | UTF_CONTINUATION_MARK))

/* The next two macros should not be used.  They were designed to be usable as
 * the case label of a switch statement, but this doesn't work for EBCDIC.  Use
 * regen/unicode_constants.pl instead */
#define UTF8_TWO_BYTE_HI_nocast(c)  __BASE_TWO_BYTE_HI(c, NATIVE_TO_UNI)
#define UTF8_TWO_BYTE_LO_nocast(c)  __BASE_TWO_BYTE_LO(c, NATIVE_TO_UNI)

/* The next two macros are used when the source should be a single byte
 * character; checked for under DEBUGGING */
#define UTF8_EIGHT_BIT_HI(c) (__ASSERT_(FITS_IN_8_BITS(c))                    \
                             ( __BASE_TWO_BYTE_HI(c, NATIVE_TO_LATIN1)))
#define UTF8_EIGHT_BIT_LO(c) (__ASSERT_(FITS_IN_8_BITS(c))                    \
                             (__BASE_TWO_BYTE_LO(c, NATIVE_TO_LATIN1)))

/* These final two macros in the series are used when the source can be any
 * code point whose UTF-8 is known to occupy 2 bytes; they are less efficient
 * than the EIGHT_BIT versions on EBCDIC platforms.  We use the logical '~'
 * operator instead of "<=" to avoid getting compiler warnings.
 * MAX_UTF8_TWO_BYTE should be exactly all one bits in the lower few
 * places, so the ~ works */
#define UTF8_TWO_BYTE_HI(c)                                                    \
       (__ASSERT_((sizeof(c) ==  1)                                            \
                  || !(((WIDEST_UTYPE)(c)) & ~MAX_UTF8_TWO_BYTE))              \
        (__BASE_TWO_BYTE_HI(c, NATIVE_TO_UNI)))
#define UTF8_TWO_BYTE_LO(c)                                                    \
       (__ASSERT_((sizeof(c) ==  1)                                            \
                  || !(((WIDEST_UTYPE)(c)) & ~MAX_UTF8_TWO_BYTE))              \
        (__BASE_TWO_BYTE_LO(c, NATIVE_TO_UNI)))

/* This is illegal in any well-formed UTF-8 in both EBCDIC and ASCII
 * as it is only in overlongs. */
#define ILLEGAL_UTF8_BYTE   I8_TO_NATIVE_UTF8(0xC1)

/*
 * 'UTF' is whether or not p is encoded in UTF8.  The names 'foo_lazy_if' stem
 * from an earlier version of these macros in which they didn't call the
 * foo_utf8() macros (i.e. were 'lazy') unless they decided that *p is the
 * beginning of a utf8 character.  Now that foo_utf8() determines that itself,
 * no need to do it again here
 */
#define isIDFIRST_lazy_if(p,UTF)                                            \
            _is_utf8_FOO(_CC_IDFIRST, (const U8 *) p, "isIDFIRST_lazy_if",  \
                         "isIDFIRST_lazy_if_safe",                          \
                         cBOOL(UTF && ! IN_BYTES), 0, __FILE__,__LINE__)

#define isIDFIRST_lazy_if_safe(p, e, UTF)                                   \
                   ((IN_BYTES || !UTF)                                      \
                     ? isIDFIRST(*(p))                                      \
                     : isIDFIRST_utf8_safe(p, e))

#define isWORDCHAR_lazy_if(p,UTF)                                           \
            _is_utf8_FOO(_CC_IDFIRST, (const U8 *) p, "isWORDCHAR_lazy_if", \
                         "isWORDCHAR_lazy_if_safe",                         \
                         cBOOL(UTF && ! IN_BYTES), 0, __FILE__,__LINE__)

#define isWORDCHAR_lazy_if_safe(p, e, UTF)                                  \
                   ((IN_BYTES || !UTF)                                      \
                     ? isWORDCHAR(*(p))                                     \
                     : isWORDCHAR_utf8_safe((U8 *) p, (U8 *) e))

#define isALNUM_lazy_if(p,UTF)                                              \
            _is_utf8_FOO(_CC_IDFIRST, (const U8 *) p, "isALNUM_lazy_if",    \
                         "isWORDCHAR_lazy_if_safe",                         \
                         cBOOL(UTF && ! IN_BYTES), 0, __FILE__,__LINE__)

#define UTF8_MAXLEN UTF8_MAXBYTES

/* A Unicode character can fold to up to 3 characters */
#define UTF8_MAX_FOLD_CHAR_EXPAND 3

#define IN_BYTES UNLIKELY(CopHINTS_get(PL_curcop) & HINT_BYTES)

/*

=for apidoc Am|bool|DO_UTF8|SV* sv
Returns a bool giving whether or not the PV in C<sv> is to be treated as being
encoded in UTF-8.

You should use this I<after> a call to C<SvPV()> or one of its variants, in
case any call to string overloading updates the internal UTF-8 encoding flag.

=cut
*/
#define DO_UTF8(sv) (SvUTF8(sv) && !IN_BYTES)

/* Should all strings be treated as Unicode, and not just UTF-8 encoded ones?
 * Is so within 'feature unicode_strings' or 'locale :not_characters', and not
 * within 'use bytes'.  UTF-8 locales are not tested for here, but perhaps
 * could be */
#define IN_UNI_8_BIT                                                    \
	    ((    (      (CopHINTS_get(PL_curcop) & HINT_UNI_8_BIT))    \
                   || (   CopHINTS_get(PL_curcop) & HINT_LOCALE_PARTIAL \
                            /* -1 below is for :not_characters */       \
                       && _is_in_locale_category(FALSE, -1)))           \
              && (! IN_BYTES))


#define UTF8_ALLOW_EMPTY		0x0001	/* Allow a zero length string */
#define UTF8_GOT_EMPTY                  UTF8_ALLOW_EMPTY

/* Allow first byte to be a continuation byte */
#define UTF8_ALLOW_CONTINUATION		0x0002
#define UTF8_GOT_CONTINUATION		UTF8_ALLOW_CONTINUATION

/* Unexpected continuation byte */
#define UTF8_ALLOW_NON_CONTINUATION	0x0004
#define UTF8_GOT_NON_CONTINUATION	UTF8_ALLOW_NON_CONTINUATION

/* expecting more bytes than were available in the string */
#define UTF8_ALLOW_SHORT		0x0008
#define UTF8_GOT_SHORT		        UTF8_ALLOW_SHORT

/* Overlong sequence; i.e., the code point can be specified in fewer bytes.
 * First one will convert the overlong to the REPLACEMENT CHARACTER; second
 * will return what the overlong evaluates to */
#define UTF8_ALLOW_LONG                 0x0010
#define UTF8_ALLOW_LONG_AND_ITS_VALUE   (UTF8_ALLOW_LONG|0x0020)
#define UTF8_GOT_LONG                   UTF8_ALLOW_LONG

#define UTF8_ALLOW_OVERFLOW             0x0080
#define UTF8_GOT_OVERFLOW               UTF8_ALLOW_OVERFLOW

#define UTF8_DISALLOW_SURROGATE		0x0100	/* Unicode surrogates */
#define UTF8_GOT_SURROGATE		UTF8_DISALLOW_SURROGATE
#define UTF8_WARN_SURROGATE		0x0200

#define UTF8_DISALLOW_NONCHAR           0x0400	/* Unicode non-character */
#define UTF8_GOT_NONCHAR                UTF8_DISALLOW_NONCHAR
#define UTF8_WARN_NONCHAR               0x0800	/*  code points */

#define UTF8_DISALLOW_SUPER		0x1000	/* Super-set of Unicode: code */
#define UTF8_GOT_SUPER		        UTF8_DISALLOW_SUPER
#define UTF8_WARN_SUPER		        0x2000	/* points above the legal max */

/* Code points which never were part of the original UTF-8 standard, which only
 * went up to 2 ** 31 - 1.  Note that these all overflow a signed 32-bit word,
 * The first byte of these code points is FE or FF on ASCII platforms.  If the
 * first byte is FF, it will overflow a 32-bit word. */
#define UTF8_DISALLOW_ABOVE_31_BIT      0x4000
#define UTF8_GOT_ABOVE_31_BIT           UTF8_DISALLOW_ABOVE_31_BIT
#define UTF8_WARN_ABOVE_31_BIT          0x8000

/* For back compat, these old names are misleading for UTF_EBCDIC */
#define UTF8_DISALLOW_FE_FF             UTF8_DISALLOW_ABOVE_31_BIT
#define UTF8_WARN_FE_FF                 UTF8_WARN_ABOVE_31_BIT

#define UTF8_CHECK_ONLY			0x10000
#define _UTF8_NO_CONFIDENCE_IN_CURLEN   0x20000  /* Internal core use only */

/* For backwards source compatibility.  They do nothing, as the default now
 * includes what they used to mean.  The first one's meaning was to allow the
 * just the single non-character 0xFFFF */
#define UTF8_ALLOW_FFFF 0
#define UTF8_ALLOW_SURROGATE 0

/* C9 refers to Unicode Corrigendum #9: allows but discourages non-chars */
#define UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE                                    \
                                 (UTF8_DISALLOW_SUPER|UTF8_DISALLOW_SURROGATE)
#define UTF8_WARN_ILLEGAL_C9_INTERCHANGE (UTF8_WARN_SUPER|UTF8_WARN_SURROGATE)

#define UTF8_DISALLOW_ILLEGAL_INTERCHANGE                                       \
                  (UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE|UTF8_DISALLOW_NONCHAR)
#define UTF8_WARN_ILLEGAL_INTERCHANGE \
                          (UTF8_WARN_ILLEGAL_C9_INTERCHANGE|UTF8_WARN_NONCHAR)

/* This is typically used for code that processes UTF-8 input and doesn't want
 * to have to deal with any malformations that might be present.  All such will
 * be safely replaced by the REPLACEMENT CHARACTER, unless other flags
 * overriding this are also present. */
#define UTF8_ALLOW_ANY ( UTF8_ALLOW_CONTINUATION                                \
                        |UTF8_ALLOW_NON_CONTINUATION                            \
                        |UTF8_ALLOW_SHORT                                       \
                        |UTF8_ALLOW_LONG                                        \
                        |UTF8_ALLOW_OVERFLOW)

/* Accept any Perl-extended UTF-8 that evaluates to any UV on the platform, but
 * not any malformed.  This is the default.  (Note that UVs above IV_MAX are
 * deprecated. */
#define UTF8_ALLOW_ANYUV   0
#define UTF8_ALLOW_DEFAULT UTF8_ALLOW_ANYUV

/*
=for apidoc Am|bool|UTF8_IS_SURROGATE|const U8 *s|const U8 *e

Evaluates to non-zero if the first few bytes of the string starting at C<s> and
looking no further than S<C<e - 1>> are well-formed UTF-8 that represents one
of the Unicode surrogate code points; otherwise it evaluates to 0.  If
non-zero, the value gives how many bytes starting at C<s> comprise the code
point's representation.

=cut
 */
#define UTF8_IS_SURROGATE(s, e)      is_SURROGATE_utf8_safe(s, e)


#define UTF8_IS_REPLACEMENT(s, send) is_REPLACEMENT_utf8_safe(s,send)

/*
=for apidoc Am|bool|UTF8_IS_SUPER|const U8 *s|const U8 *e

Recall that Perl recognizes an extension to UTF-8 that can encode code
points larger than the ones defined by Unicode, which are 0..0x10FFFF.

This macro evaluates to non-zero if the first few bytes of the string starting
at C<s> and looking no further than S<C<e - 1>> are from this UTF-8 extension;
otherwise it evaluates to 0.  If non-zero, the value gives how many bytes
starting at C<s> comprise the code point's representation.

0 is returned if the bytes are not well-formed extended UTF-8, or if they
represent a code point that cannot fit in a UV on the current platform.  Hence
this macro can give different results when run on a 64-bit word machine than on
one with a 32-bit word size.

Note that it is deprecated to have code points that are larger than what can
fit in an IV on the current machine.

=cut

 *		  ASCII		     EBCDIC I8
 * U+10FFFF: \xF4\x8F\xBF\xBF	\xF9\xA1\xBF\xBF\xBF	max legal Unicode
 * U+110000: \xF4\x90\x80\x80	\xF9\xA2\xA0\xA0\xA0
 * U+110001: \xF4\x90\x80\x81	\xF9\xA2\xA0\xA0\xA1
 */
#ifdef EBCDIC
#   define UTF8_IS_SUPER(s, e)                                              \
                  ((    LIKELY((e) > (s) + 4)                               \
                    &&      NATIVE_UTF8_TO_I8(*(s)) >= 0xF9                 \
                    && (    NATIVE_UTF8_TO_I8(*(s)) >  0xF9                 \
                        || (NATIVE_UTF8_TO_I8(*((s) + 1)) >= 0xA2))         \
                    &&  LIKELY((s) + UTF8SKIP(s) <= (e)))                   \
                    ? _is_utf8_char_helper(s, s + UTF8SKIP(s), 0) : 0)
#else
#   define UTF8_IS_SUPER(s, e)                                              \
                   ((    LIKELY((e) > (s) + 3)                              \
                     &&  (*(U8*) (s)) >= 0xF4                               \
                     && ((*(U8*) (s)) >  0xF4 || (*((U8*) (s) + 1) >= 0x90))\
                     &&  LIKELY((s) + UTF8SKIP(s) <= (e)))                  \
                    ? _is_utf8_char_helper(s, s + UTF8SKIP(s), 0) : 0)
#endif

/* These are now machine generated, and the 'given' clause is no longer
 * applicable */
#define UTF8_IS_NONCHAR_GIVEN_THAT_NON_SUPER_AND_GE_PROBLEMATIC(s, e)          \
                                            cBOOL(is_NONCHAR_utf8_safe(s,e))

/*
=for apidoc Am|bool|UTF8_IS_NONCHAR|const U8 *s|const U8 *e

Evaluates to non-zero if the first few bytes of the string starting at C<s> and
looking no further than S<C<e - 1>> are well-formed UTF-8 that represents one
of the Unicode non-character code points; otherwise it evaluates to 0.  If
non-zero, the value gives how many bytes starting at C<s> comprise the code
point's representation.

=cut
 */
#define UTF8_IS_NONCHAR(s, e)                                                  \
                UTF8_IS_NONCHAR_GIVEN_THAT_NON_SUPER_AND_GE_PROBLEMATIC(s, e)

#define UNICODE_SURROGATE_FIRST		0xD800
#define UNICODE_SURROGATE_LAST		0xDFFF
#define UNICODE_REPLACEMENT		0xFFFD
#define UNICODE_BYTE_ORDER_MARK		0xFEFF

/* Though our UTF-8 encoding can go beyond this,
 * let's be conservative and do as Unicode says. */
#define PERL_UNICODE_MAX	0x10FFFF

#define UNICODE_WARN_SURROGATE        0x0001	/* UTF-16 surrogates */
#define UNICODE_WARN_NONCHAR          0x0002	/* Non-char code points */
#define UNICODE_WARN_SUPER            0x0004	/* Above 0x10FFFF */
#define UNICODE_WARN_ABOVE_31_BIT     0x0008	/* Above 0x7FFF_FFFF */
#define UNICODE_DISALLOW_SURROGATE    0x0010
#define UNICODE_DISALLOW_NONCHAR      0x0020
#define UNICODE_DISALLOW_SUPER        0x0040
#define UNICODE_DISALLOW_ABOVE_31_BIT 0x0080
#define UNICODE_WARN_ILLEGAL_C9_INTERCHANGE                                   \
                                  (UNICODE_WARN_SURROGATE|UNICODE_WARN_SUPER)
#define UNICODE_WARN_ILLEGAL_INTERCHANGE                                      \
                   (UNICODE_WARN_ILLEGAL_C9_INTERCHANGE|UNICODE_WARN_NONCHAR)
#define UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE                               \
                          (UNICODE_DISALLOW_SURROGATE|UNICODE_DISALLOW_SUPER)
#define UNICODE_DISALLOW_ILLEGAL_INTERCHANGE                                  \
           (UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE|UNICODE_DISALLOW_NONCHAR)

/* For backward source compatibility, as are now the default */
#define UNICODE_ALLOW_SURROGATE 0
#define UNICODE_ALLOW_SUPER	0
#define UNICODE_ALLOW_ANY	0

/* This matches the 2048 code points between UNICODE_SURROGATE_FIRST (0xD800) and
 * UNICODE_SURROGATE_LAST (0xDFFF) */
#define UNICODE_IS_SURROGATE(uv)        (((UV) (uv) & (~0xFFFF | 0xF800))       \
                                                                    == 0xD800)

#define UNICODE_IS_REPLACEMENT(uv)	((UV) (uv) == UNICODE_REPLACEMENT)
#define UNICODE_IS_BYTE_ORDER_MARK(uv)	((UV) (uv) == UNICODE_BYTE_ORDER_MARK)

/* Is 'uv' one of the 32 contiguous-range noncharacters? */
#define UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)      ((UV) (uv) >= 0xFDD0         \
                                                 && (UV) (uv) <= 0xFDEF)

/* Is 'uv' one of the 34 plane-ending noncharacters 0xFFFE, 0xFFFF, 0x1FFFE,
 * 0x1FFFF, ... 0x10FFFE, 0x10FFFF, given that we know that 'uv' is not above
 * the Unicode legal max */
#define UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)                        \
                                              (((UV) (uv) & 0xFFFE) == 0xFFFE)

#define UNICODE_IS_NONCHAR(uv)                                                  \
    (   UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)                                   \
     || (   LIKELY( ! UNICODE_IS_SUPER(uv))                                     \
         && UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))

#define UNICODE_IS_SUPER(uv)    ((UV) (uv) > PERL_UNICODE_MAX)
#define UNICODE_IS_ABOVE_31_BIT(uv)    ((UV) (uv) > 0x7FFFFFFF)

#define LATIN_SMALL_LETTER_SHARP_S      LATIN_SMALL_LETTER_SHARP_S_NATIVE
#define LATIN_SMALL_LETTER_Y_WITH_DIAERESIS                                  \
                                LATIN_SMALL_LETTER_Y_WITH_DIAERESIS_NATIVE
#define MICRO_SIGN      MICRO_SIGN_NATIVE
#define LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE                               \
                            LATIN_CAPITAL_LETTER_A_WITH_RING_ABOVE_NATIVE
#define LATIN_SMALL_LETTER_A_WITH_RING_ABOVE                                 \
                                LATIN_SMALL_LETTER_A_WITH_RING_ABOVE_NATIVE
#define UNICODE_GREEK_CAPITAL_LETTER_SIGMA	0x03A3
#define UNICODE_GREEK_SMALL_LETTER_FINAL_SIGMA	0x03C2
#define UNICODE_GREEK_SMALL_LETTER_SIGMA	0x03C3
#define GREEK_SMALL_LETTER_MU                   0x03BC
#define GREEK_CAPITAL_LETTER_MU                 0x039C	/* Upper and title case
                                                           of MICRON */
#define LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS   0x0178	/* Also is title case */
#ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
#   define LATIN_CAPITAL_LETTER_SHARP_S	        0x1E9E
#endif
#define LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE   0x130
#define LATIN_SMALL_LETTER_DOTLESS_I            0x131
#define LATIN_SMALL_LETTER_LONG_S               0x017F
#define LATIN_SMALL_LIGATURE_LONG_S_T           0xFB05
#define LATIN_SMALL_LIGATURE_ST                 0xFB06
#define KELVIN_SIGN                             0x212A
#define ANGSTROM_SIGN                           0x212B

#define UNI_DISPLAY_ISPRINT	0x0001
#define UNI_DISPLAY_BACKSLASH	0x0002
#define UNI_DISPLAY_QQ		(UNI_DISPLAY_ISPRINT|UNI_DISPLAY_BACKSLASH)
#define UNI_DISPLAY_REGEX	(UNI_DISPLAY_ISPRINT|UNI_DISPLAY_BACKSLASH)

#define ANYOF_FOLD_SHARP_S(node, input, end)	\
	(ANYOF_BITMAP_TEST(node, LATIN_SMALL_LETTER_SHARP_S) && \
	 (ANYOF_NONBITMAP(node)) && \
	 (ANYOF_FLAGS(node) & ANYOF_LOC_NONBITMAP_FOLD) && \
	 ((end) > (input) + 1) && \
	 isALPHA_FOLD_EQ((input)[0], 's'))

#define SHARP_S_SKIP 2

/*

=for apidoc Am|STRLEN|isUTF8_CHAR|const U8 *s|const U8 *e

Evaluates to non-zero if the first few bytes of the string starting at C<s> and
looking no further than S<C<e - 1>> are well-formed UTF-8, as extended by Perl,
that represents some code point; otherwise it evaluates to 0.  If non-zero, the
value gives how many bytes starting at C<s> comprise the code point's
representation.  Any bytes remaining before C<e>, but beyond the ones needed to
form the first code point in C<s>, are not examined.

The code point can be any that will fit in a UV on this machine, using Perl's
extension to official UTF-8 to represent those higher than the Unicode maximum
of 0x10FFFF.  That means that this macro is used to efficiently decide if the
next few bytes in C<s> is legal UTF-8 for a single character.

Use C<L</isSTRICT_UTF8_CHAR>> to restrict the acceptable code points to those
defined by Unicode to be fully interchangeable across applications;
C<L</isC9_STRICT_UTF8_CHAR>> to use the L<Unicode Corrigendum
#9|http://www.unicode.org/versions/corrigendum9.html> definition of allowable
code points; and C<L</isUTF8_CHAR_flags>> for a more customized definition.

Use C<L</is_utf8_string>>, C<L</is_utf8_string_loc>>, and
C<L</is_utf8_string_loclen>> to check entire strings.

Note that it is deprecated to use code points higher than what will fit in an
IV.  This macro does not raise any warnings for such code points, treating them
as valid.

Note also that a UTF-8 INVARIANT character (i.e. ASCII on non-EBCDIC machines)
is a valid UTF-8 character.

=cut
*/

#define isUTF8_CHAR(s, e)                                                   \
    (UNLIKELY((e) <= (s))                                                   \
    ? 0                                                                     \
    : (UTF8_IS_INVARIANT(*s))                                               \
      ? 1                                                                   \
      : UNLIKELY(((e) - (s)) < UTF8SKIP(s))                                 \
        ? 0                                                                 \
        : LIKELY(NATIVE_UTF8_TO_I8(*s) <= _IS_UTF8_CHAR_HIGHEST_START_BYTE) \
          ? is_UTF8_CHAR_utf8_no_length_checks(s)                           \
          : _is_utf8_char_helper(s, e, 0))

#define is_utf8_char_buf(buf, buf_end) isUTF8_CHAR(buf, buf_end)

/*

=for apidoc Am|STRLEN|isSTRICT_UTF8_CHAR|const U8 *s|const U8 *e

Evaluates to non-zero if the first few bytes of the string starting at C<s> and
looking no further than S<C<e - 1>> are well-formed UTF-8 that represents some
Unicode code point completely acceptable for open interchange between all
applications; otherwise it evaluates to 0.  If non-zero, the value gives how
many bytes starting at C<s> comprise the code point's representation.  Any
bytes remaining before C<e>, but beyond the ones needed to form the first code
point in C<s>, are not examined.

The largest acceptable code point is the Unicode maximum 0x10FFFF, and must not
be a surrogate nor a non-character code point.  Thus this excludes any code
point from Perl's extended UTF-8.

This is used to efficiently decide if the next few bytes in C<s> is
legal Unicode-acceptable UTF-8 for a single character.

Use C<L</isC9_STRICT_UTF8_CHAR>> to use the L<Unicode Corrigendum
#9|http://www.unicode.org/versions/corrigendum9.html> definition of allowable
code points; C<L</isUTF8_CHAR>> to check for Perl's extended UTF-8;
and C<L</isUTF8_CHAR_flags>> for a more customized definition.

Use C<L</is_strict_utf8_string>>, C<L</is_strict_utf8_string_loc>>, and
C<L</is_strict_utf8_string_loclen>> to check entire strings.

=cut
*/

#define isSTRICT_UTF8_CHAR(s, e)                                            \
    (UNLIKELY((e) <= (s))                                                   \
    ? 0                                                                     \
    : (UTF8_IS_INVARIANT(*s))                                               \
      ? 1                                                                   \
      : UNLIKELY(((e) - (s)) < UTF8SKIP(s))                                 \
        ? 0                                                                 \
        : is_STRICT_UTF8_CHAR_utf8_no_length_checks(s))

/*

=for apidoc Am|STRLEN|isC9_STRICT_UTF8_CHAR|const U8 *s|const U8 *e

Evaluates to non-zero if the first few bytes of the string starting at C<s> and
looking no further than S<C<e - 1>> are well-formed UTF-8 that represents some
Unicode non-surrogate code point; otherwise it evaluates to 0.  If non-zero,
the value gives how many bytes starting at C<s> comprise the code point's
representation.  Any bytes remaining before C<e>, but beyond the ones needed to
form the first code point in C<s>, are not examined.

The largest acceptable code point is the Unicode maximum 0x10FFFF.  This
differs from C<L</isSTRICT_UTF8_CHAR>> only in that it accepts non-character
code points.  This corresponds to
L<Unicode Corrigendum #9|http://www.unicode.org/versions/corrigendum9.html>.
which said that non-character code points are merely discouraged rather than
completely forbidden in open interchange.  See
L<perlunicode/Noncharacter code points>.

Use C<L</isUTF8_CHAR>> to check for Perl's extended UTF-8; and
C<L</isUTF8_CHAR_flags>> for a more customized definition.

Use C<L</is_c9strict_utf8_string>>, C<L</is_c9strict_utf8_string_loc>>, and
C<L</is_c9strict_utf8_string_loclen>> to check entire strings.

=cut
*/

#define isC9_STRICT_UTF8_CHAR(s, e)                                         \
    (UNLIKELY((e) <= (s))                                                   \
    ? 0                                                                     \
    : (UTF8_IS_INVARIANT(*s))                                               \
      ? 1                                                                   \
      : UNLIKELY(((e) - (s)) < UTF8SKIP(s))                                 \
        ? 0                                                                 \
        : is_C9_STRICT_UTF8_CHAR_utf8_no_length_checks(s))

/*

=for apidoc Am|STRLEN|isUTF8_CHAR_flags|const U8 *s|const U8 *e| const U32 flags

Evaluates to non-zero if the first few bytes of the string starting at C<s> and
looking no further than S<C<e - 1>> are well-formed UTF-8, as extended by Perl,
that represents some code point, subject to the restrictions given by C<flags>;
otherwise it evaluates to 0.  If non-zero, the value gives how many bytes
starting at C<s> comprise the code point's representation.  Any bytes remaining
before C<e>, but beyond the ones needed to form the first code point in C<s>,
are not examined.

If C<flags> is 0, this gives the same results as C<L</isUTF8_CHAR>>;
if C<flags> is C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, this gives the same results
as C<L</isSTRICT_UTF8_CHAR>>;
and if C<flags> is C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE>, this gives
the same results as C<L</isC9_STRICT_UTF8_CHAR>>.
Otherwise C<flags> may be any combination of the C<UTF8_DISALLOW_I<foo>> flags
understood by C<L</utf8n_to_uvchr>>, with the same meanings.

The three alternative macros are for the most commonly needed validations; they
are likely to run somewhat faster than this more general one, as they can be
inlined into your code.

Use L</is_utf8_string_flags>, L</is_utf8_string_loc_flags>, and
L</is_utf8_string_loclen_flags> to check entire strings.

=cut
*/

#define isUTF8_CHAR_flags(s, e, flags)                                      \
    (UNLIKELY((e) <= (s))                                                   \
    ? 0                                                                     \
    : (UTF8_IS_INVARIANT(*s))                                               \
      ? 1                                                                   \
      : UNLIKELY(((e) - (s)) < UTF8SKIP(s))                                 \
        ? 0                                                                 \
        : _is_utf8_char_helper(s, e, flags))

/* Do not use; should be deprecated.  Use isUTF8_CHAR() instead; this is
 * retained solely for backwards compatibility */
#define IS_UTF8_CHAR(p, n)      (isUTF8_CHAR(p, (p) + (n)) == n)

#endif /* H_UTF8 */

/*
 * ex: set ts=8 sts=4 sw=4 et:
 */

Zerion Mini Shell 1.0