%PDF- %PDF-
Direktori : /usr/include/OpenEXR/ |
Current File : //usr/include/OpenEXR/ImathFrustum.h |
/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHFRUSTUM_H #define INCLUDED_IMATHFRUSTUM_H #include "ImathVec.h" #include "ImathPlane.h" #include "ImathLine.h" #include "ImathMatrix.h" #include "ImathLimits.h" #include "ImathFun.h" #include "ImathNamespace.h" #include "IexMathExc.h" IMATH_INTERNAL_NAMESPACE_HEADER_ENTER // // template class Frustum<T> // // The frustum is always located with the eye point at the // origin facing down -Z. This makes the Frustum class // compatable with OpenGL (or anything that assumes a camera // looks down -Z, hence with a right-handed coordinate system) // but not with RenderMan which assumes the camera looks down // +Z. Additional functions are provided for conversion from // and from various camera coordinate spaces. // // nearPlane/farPlane: near/far are keywords used by Microsoft's // compiler, so we use nearPlane/farPlane instead to avoid // issues. template<class T> class Frustum { public: Frustum(); Frustum(const Frustum &); Frustum(T nearPlane, T farPlane, T left, T right, T top, T bottom, bool ortho=false); Frustum(T nearPlane, T farPlane, T fovx, T fovy, T aspect); virtual ~Frustum(); //-------------------- // Assignment operator //-------------------- const Frustum & operator = (const Frustum &); //-------------------- // Operators: ==, != //-------------------- bool operator == (const Frustum<T> &src) const; bool operator != (const Frustum<T> &src) const; //-------------------------------------------------------- // Set functions change the entire state of the Frustum //-------------------------------------------------------- void set(T nearPlane, T farPlane, T left, T right, T top, T bottom, bool ortho=false); void set(T nearPlane, T farPlane, T fovx, T fovy, T aspect); //------------------------------------------------------ // These functions modify an already valid frustum state //------------------------------------------------------ void modifyNearAndFar(T nearPlane, T farPlane); void setOrthographic(bool); //-------------- // Access //-------------- bool orthographic() const { return _orthographic; } T nearPlane() const { return _nearPlane; } T hither() const { return _nearPlane; } T farPlane() const { return _farPlane; } T yon() const { return _farPlane; } T left() const { return _left; } T right() const { return _right; } T bottom() const { return _bottom; } T top() const { return _top; } //----------------------------------------------------------------------- // Sets the planes in p to be the six bounding planes of the frustum, in // the following order: top, right, bottom, left, near, far. // Note that the planes have normals that point out of the frustum. // The version of this routine that takes a matrix applies that matrix // to transform the frustum before setting the planes. //----------------------------------------------------------------------- void planes(Plane3<T> p[6]) const; void planes(Plane3<T> p[6], const Matrix44<T> &M) const; //---------------------- // Derived Quantities //---------------------- T fovx() const; T fovy() const; T aspect() const; Matrix44<T> projectionMatrix() const; bool degenerate() const; //----------------------------------------------------------------------- // Takes a rectangle in the screen space (i.e., -1 <= left <= right <= 1 // and -1 <= bottom <= top <= 1) of this Frustum, and returns a new // Frustum whose near clipping-plane window is that rectangle in local // space. //----------------------------------------------------------------------- Frustum<T> window(T left, T right, T top, T bottom) const; //---------------------------------------------------------- // Projection is in screen space / Conversion from Z-Buffer //---------------------------------------------------------- Line3<T> projectScreenToRay( const Vec2<T> & ) const; Vec2<T> projectPointToScreen( const Vec3<T> & ) const; T ZToDepth(long zval, long min, long max) const; T normalizedZToDepth(T zval) const; long DepthToZ(T depth, long zmin, long zmax) const; T worldRadius(const Vec3<T> &p, T radius) const; T screenRadius(const Vec3<T> &p, T radius) const; protected: Vec2<T> screenToLocal( const Vec2<T> & ) const; Vec2<T> localToScreen( const Vec2<T> & ) const; protected: T _nearPlane; T _farPlane; T _left; T _right; T _top; T _bottom; bool _orthographic; }; template<class T> inline Frustum<T>::Frustum() { set(T (0.1), T (1000.0), T (-1.0), T (1.0), T (1.0), T (-1.0), false); } template<class T> inline Frustum<T>::Frustum(const Frustum &f) { *this = f; } template<class T> inline Frustum<T>::Frustum(T n, T f, T l, T r, T t, T b, bool o) { set(n,f,l,r,t,b,o); } template<class T> inline Frustum<T>::Frustum(T nearPlane, T farPlane, T fovx, T fovy, T aspect) { set(nearPlane,farPlane,fovx,fovy,aspect); } template<class T> Frustum<T>::~Frustum() { } template<class T> const Frustum<T> & Frustum<T>::operator = (const Frustum &f) { _nearPlane = f._nearPlane; _farPlane = f._farPlane; _left = f._left; _right = f._right; _top = f._top; _bottom = f._bottom; _orthographic = f._orthographic; return *this; } template <class T> bool Frustum<T>::operator == (const Frustum<T> &src) const { return _nearPlane == src._nearPlane && _farPlane == src._farPlane && _left == src._left && _right == src._right && _top == src._top && _bottom == src._bottom && _orthographic == src._orthographic; } template <class T> inline bool Frustum<T>::operator != (const Frustum<T> &src) const { return !operator== (src); } template<class T> void Frustum<T>::set(T n, T f, T l, T r, T t, T b, bool o) { _nearPlane = n; _farPlane = f; _left = l; _right = r; _bottom = b; _top = t; _orthographic = o; } template<class T> void Frustum<T>::modifyNearAndFar(T n, T f) { if ( _orthographic ) { _nearPlane = n; } else { Line3<T> lowerLeft( Vec3<T>(0,0,0), Vec3<T>(_left,_bottom,-_nearPlane) ); Line3<T> upperRight( Vec3<T>(0,0,0), Vec3<T>(_right,_top,-_nearPlane) ); Plane3<T> nearPlane( Vec3<T>(0,0,-1), n ); Vec3<T> ll,ur; nearPlane.intersect(lowerLeft,ll); nearPlane.intersect(upperRight,ur); _left = ll.x; _right = ur.x; _top = ur.y; _bottom = ll.y; _nearPlane = n; _farPlane = f; } _farPlane = f; } template<class T> void Frustum<T>::setOrthographic(bool ortho) { _orthographic = ortho; } template<class T> void Frustum<T>::set(T nearPlane, T farPlane, T fovx, T fovy, T aspect) { if (fovx != 0 && fovy != 0) throw IEX_NAMESPACE::ArgExc ("fovx and fovy cannot both be non-zero."); const T two = static_cast<T>(2); if (fovx != 0) { _right = nearPlane * Math<T>::tan(fovx / two); _left = -_right; _top = ((_right - _left) / aspect) / two; _bottom = -_top; } else { _top = nearPlane * Math<T>::tan(fovy / two); _bottom = -_top; _right = (_top - _bottom) * aspect / two; _left = -_right; } _nearPlane = nearPlane; _farPlane = farPlane; _orthographic = false; } template<class T> T Frustum<T>::fovx() const { return Math<T>::atan2(_right,_nearPlane) - Math<T>::atan2(_left,_nearPlane); } template<class T> T Frustum<T>::fovy() const { return Math<T>::atan2(_top,_nearPlane) - Math<T>::atan2(_bottom,_nearPlane); } template<class T> T Frustum<T>::aspect() const { T rightMinusLeft = _right-_left; T topMinusBottom = _top-_bottom; if (abs(topMinusBottom) < 1 && abs(rightMinusLeft) > limits<T>::max() * abs(topMinusBottom)) { throw IEX_NAMESPACE::DivzeroExc ("Bad viewing frustum: " "aspect ratio cannot be computed."); } return rightMinusLeft / topMinusBottom; } template<class T> Matrix44<T> Frustum<T>::projectionMatrix() const { T rightPlusLeft = _right+_left; T rightMinusLeft = _right-_left; T topPlusBottom = _top+_bottom; T topMinusBottom = _top-_bottom; T farPlusNear = _farPlane+_nearPlane; T farMinusNear = _farPlane-_nearPlane; if ((abs(rightMinusLeft) < 1 && abs(rightPlusLeft) > limits<T>::max() * abs(rightMinusLeft)) || (abs(topMinusBottom) < 1 && abs(topPlusBottom) > limits<T>::max() * abs(topMinusBottom)) || (abs(farMinusNear) < 1 && abs(farPlusNear) > limits<T>::max() * abs(farMinusNear))) { throw IEX_NAMESPACE::DivzeroExc ("Bad viewing frustum: " "projection matrix cannot be computed."); } if ( _orthographic ) { T tx = -rightPlusLeft / rightMinusLeft; T ty = -topPlusBottom / topMinusBottom; T tz = -farPlusNear / farMinusNear; if ((abs(rightMinusLeft) < 1 && 2 > limits<T>::max() * abs(rightMinusLeft)) || (abs(topMinusBottom) < 1 && 2 > limits<T>::max() * abs(topMinusBottom)) || (abs(farMinusNear) < 1 && 2 > limits<T>::max() * abs(farMinusNear))) { throw IEX_NAMESPACE::DivzeroExc ("Bad viewing frustum: " "projection matrix cannot be computed."); } T A = 2 / rightMinusLeft; T B = 2 / topMinusBottom; T C = -2 / farMinusNear; return Matrix44<T>( A, 0, 0, 0, 0, B, 0, 0, 0, 0, C, 0, tx, ty, tz, 1.f ); } else { T A = rightPlusLeft / rightMinusLeft; T B = topPlusBottom / topMinusBottom; T C = -farPlusNear / farMinusNear; T farTimesNear = -2 * _farPlane * _nearPlane; if (abs(farMinusNear) < 1 && abs(farTimesNear) > limits<T>::max() * abs(farMinusNear)) { throw IEX_NAMESPACE::DivzeroExc ("Bad viewing frustum: " "projection matrix cannot be computed."); } T D = farTimesNear / farMinusNear; T twoTimesNear = 2 * _nearPlane; if ((abs(rightMinusLeft) < 1 && abs(twoTimesNear) > limits<T>::max() * abs(rightMinusLeft)) || (abs(topMinusBottom) < 1 && abs(twoTimesNear) > limits<T>::max() * abs(topMinusBottom))) { throw IEX_NAMESPACE::DivzeroExc ("Bad viewing frustum: " "projection matrix cannot be computed."); } T E = twoTimesNear / rightMinusLeft; T F = twoTimesNear / topMinusBottom; return Matrix44<T>( E, 0, 0, 0, 0, F, 0, 0, A, B, C, -1, 0, 0, D, 0 ); } } template<class T> bool Frustum<T>::degenerate() const { return (_nearPlane == _farPlane) || (_left == _right) || (_top == _bottom); } template<class T> Frustum<T> Frustum<T>::window(T l, T r, T t, T b) const { // move it to 0->1 space Vec2<T> bl = screenToLocal( Vec2<T>(l,b) ); Vec2<T> tr = screenToLocal( Vec2<T>(r,t) ); return Frustum<T>(_nearPlane, _farPlane, bl.x, tr.x, tr.y, bl.y, _orthographic); } template<class T> Vec2<T> Frustum<T>::screenToLocal(const Vec2<T> &s) const { return Vec2<T>( _left + (_right-_left) * (1.f+s.x) / 2.f, _bottom + (_top-_bottom) * (1.f+s.y) / 2.f ); } template<class T> Vec2<T> Frustum<T>::localToScreen(const Vec2<T> &p) const { T leftPlusRight = _left - T (2) * p.x + _right; T leftMinusRight = _left-_right; T bottomPlusTop = _bottom - T (2) * p.y + _top; T bottomMinusTop = _bottom-_top; if ((abs(leftMinusRight) < T (1) && abs(leftPlusRight) > limits<T>::max() * abs(leftMinusRight)) || (abs(bottomMinusTop) < T (1) && abs(bottomPlusTop) > limits<T>::max() * abs(bottomMinusTop))) { throw IEX_NAMESPACE::DivzeroExc ("Bad viewing frustum: " "local-to-screen transformation cannot be computed"); } return Vec2<T>( leftPlusRight / leftMinusRight, bottomPlusTop / bottomMinusTop ); } template<class T> Line3<T> Frustum<T>::projectScreenToRay(const Vec2<T> &p) const { Vec2<T> point = screenToLocal(p); if (orthographic()) return Line3<T>( Vec3<T>(point.x,point.y, 0.0), Vec3<T>(point.x,point.y,-1.0)); else return Line3<T>( Vec3<T>(0, 0, 0), Vec3<T>(point.x,point.y,-_nearPlane)); } template<class T> Vec2<T> Frustum<T>::projectPointToScreen(const Vec3<T> &point) const { if (orthographic() || point.z == T (0)) return localToScreen( Vec2<T>( point.x, point.y ) ); else return localToScreen( Vec2<T>( point.x * _nearPlane / -point.z, point.y * _nearPlane / -point.z ) ); } template<class T> T Frustum<T>::ZToDepth(long zval,long zmin,long zmax) const { int zdiff = zmax - zmin; if (zdiff == 0) { throw IEX_NAMESPACE::DivzeroExc ("Bad call to Frustum::ZToDepth: zmax == zmin"); } if ( zval > zmax+1 ) zval -= zdiff; T fzval = (T(zval) - T(zmin)) / T(zdiff); return normalizedZToDepth(fzval); } template<class T> T Frustum<T>::normalizedZToDepth(T zval) const { T Zp = zval * 2.0 - 1; if ( _orthographic ) { return -(Zp*(_farPlane-_nearPlane) + (_farPlane+_nearPlane))/2; } else { T farTimesNear = 2 * _farPlane * _nearPlane; T farMinusNear = Zp * (_farPlane - _nearPlane) - _farPlane - _nearPlane; if (abs(farMinusNear) < 1 && abs(farTimesNear) > limits<T>::max() * abs(farMinusNear)) { throw IEX_NAMESPACE::DivzeroExc ("Frustum::normalizedZToDepth cannot be computed. The " "near and far clipping planes of the viewing frustum " "may be too close to each other"); } return farTimesNear / farMinusNear; } } template<class T> long Frustum<T>::DepthToZ(T depth,long zmin,long zmax) const { long zdiff = zmax - zmin; T farMinusNear = _farPlane-_nearPlane; if ( _orthographic ) { T farPlusNear = 2*depth + _farPlane + _nearPlane; if (abs(farMinusNear) < 1 && abs(farPlusNear) > limits<T>::max() * abs(farMinusNear)) { throw IEX_NAMESPACE::DivzeroExc ("Bad viewing frustum: near and far clipping planes " "are too close to each other"); } T Zp = -farPlusNear/farMinusNear; return long(0.5*(Zp+1)*zdiff) + zmin; } else { // Perspective T farTimesNear = 2*_farPlane*_nearPlane; if (abs(depth) < 1 && abs(farTimesNear) > limits<T>::max() * abs(depth)) { throw IEX_NAMESPACE::DivzeroExc ("Bad call to DepthToZ function: value of `depth' " "is too small"); } T farPlusNear = farTimesNear/depth + _farPlane + _nearPlane; if (abs(farMinusNear) < 1 && abs(farPlusNear) > limits<T>::max() * abs(farMinusNear)) { throw IEX_NAMESPACE::DivzeroExc ("Bad viewing frustum: near and far clipping planes " "are too close to each other"); } T Zp = farPlusNear/farMinusNear; return long(0.5*(Zp+1)*zdiff) + zmin; } } template<class T> T Frustum<T>::screenRadius(const Vec3<T> &p, T radius) const { // Derivation: // Consider X-Z plane. // X coord of projection of p = xp = p.x * (-_nearPlane / p.z) // Let q be p + (radius, 0, 0). // X coord of projection of q = xq = (p.x - radius) * (-_nearPlane / p.z) // X coord of projection of segment from p to q = r = xp - xq // = radius * (-_nearPlane / p.z) // A similar analysis holds in the Y-Z plane. // So r is the quantity we want to return. if (abs(p.z) > 1 || abs(-_nearPlane) < limits<T>::max() * abs(p.z)) { return radius * (-_nearPlane / p.z); } else { throw IEX_NAMESPACE::DivzeroExc ("Bad call to Frustum::screenRadius: the magnitude of `p' " "is too small"); } return radius * (-_nearPlane / p.z); } template<class T> T Frustum<T>::worldRadius(const Vec3<T> &p, T radius) const { if (abs(-_nearPlane) > 1 || abs(p.z) < limits<T>::max() * abs(-_nearPlane)) { return radius * (p.z / -_nearPlane); } else { throw IEX_NAMESPACE::DivzeroExc ("Bad viewing frustum: the near clipping plane is too " "close to zero"); } } template<class T> void Frustum<T>::planes(Plane3<T> p[6]) const { // // Plane order: Top, Right, Bottom, Left, Near, Far. // Normals point outwards. // if (! _orthographic) { Vec3<T> a( _left, _bottom, -_nearPlane); Vec3<T> b( _left, _top, -_nearPlane); Vec3<T> c( _right, _top, -_nearPlane); Vec3<T> d( _right, _bottom, -_nearPlane); Vec3<T> o(0,0,0); p[0].set( o, c, b ); p[1].set( o, d, c ); p[2].set( o, a, d ); p[3].set( o, b, a ); } else { p[0].set( Vec3<T>( 0, 1, 0), _top ); p[1].set( Vec3<T>( 1, 0, 0), _right ); p[2].set( Vec3<T>( 0,-1, 0),-_bottom ); p[3].set( Vec3<T>(-1, 0, 0),-_left ); } p[4].set( Vec3<T>(0, 0, 1), -_nearPlane ); p[5].set( Vec3<T>(0, 0,-1), _farPlane ); } template<class T> void Frustum<T>::planes(Plane3<T> p[6], const Matrix44<T> &M) const { // // Plane order: Top, Right, Bottom, Left, Near, Far. // Normals point outwards. // Vec3<T> a = Vec3<T>( _left, _bottom, -_nearPlane) * M; Vec3<T> b = Vec3<T>( _left, _top, -_nearPlane) * M; Vec3<T> c = Vec3<T>( _right, _top, -_nearPlane) * M; Vec3<T> d = Vec3<T>( _right, _bottom, -_nearPlane) * M; if (! _orthographic) { double s = _farPlane / double(_nearPlane); T farLeft = (T) (s * _left); T farRight = (T) (s * _right); T farTop = (T) (s * _top); T farBottom = (T) (s * _bottom); Vec3<T> e = Vec3<T>( farLeft, farBottom, -_farPlane) * M; Vec3<T> f = Vec3<T>( farLeft, farTop, -_farPlane) * M; Vec3<T> g = Vec3<T>( farRight, farTop, -_farPlane) * M; Vec3<T> o = Vec3<T>(0,0,0) * M; p[0].set( o, c, b ); p[1].set( o, d, c ); p[2].set( o, a, d ); p[3].set( o, b, a ); p[4].set( a, d, c ); p[5].set( e, f, g ); } else { Vec3<T> e = Vec3<T>( _left, _bottom, -_farPlane) * M; Vec3<T> f = Vec3<T>( _left, _top, -_farPlane) * M; Vec3<T> g = Vec3<T>( _right, _top, -_farPlane) * M; Vec3<T> h = Vec3<T>( _right, _bottom, -_farPlane) * M; p[0].set( c, g, f ); p[1].set( d, h, g ); p[2].set( a, e, h ); p[3].set( b, f, e ); p[4].set( a, d, c ); p[5].set( e, f, g ); } } typedef Frustum<float> Frustumf; typedef Frustum<double> Frustumd; IMATH_INTERNAL_NAMESPACE_HEADER_EXIT #if defined _WIN32 || defined _WIN64 #ifdef _redef_near #define near #endif #ifdef _redef_far #define far #endif #endif #endif // INCLUDED_IMATHFRUSTUM_H