%PDF- %PDF-
Direktori : /usr/include/OpenEXR/ |
Current File : //usr/include/OpenEXR/ImathMatrix.h |
/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHMATRIX_H #define INCLUDED_IMATHMATRIX_H //---------------------------------------------------------------- // // 2D (3x3) and 3D (4x4) transformation matrix templates. // //---------------------------------------------------------------- #include "ImathPlatform.h" #include "ImathFun.h" #include "ImathExc.h" #include "ImathVec.h" #include "ImathShear.h" #include "ImathNamespace.h" #include <cstring> #include <iostream> #include <iomanip> #include <string.h> #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER // suppress exception specification warnings #pragma warning(disable:4290) #endif IMATH_INTERNAL_NAMESPACE_HEADER_ENTER enum Uninitialized {UNINITIALIZED}; template <class T> class Matrix33 { public: //------------------- // Access to elements //------------------- T x[3][3]; T * operator [] (int i); const T * operator [] (int i) const; //------------- // Constructors //------------- Matrix33 (Uninitialized) {} Matrix33 (); // 1 0 0 // 0 1 0 // 0 0 1 Matrix33 (T a); // a a a // a a a // a a a Matrix33 (const T a[3][3]); // a[0][0] a[0][1] a[0][2] // a[1][0] a[1][1] a[1][2] // a[2][0] a[2][1] a[2][2] Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i); // a b c // d e f // g h i //-------------------------------- // Copy constructor and assignment //-------------------------------- Matrix33 (const Matrix33 &v); template <class S> explicit Matrix33 (const Matrix33<S> &v); const Matrix33 & operator = (const Matrix33 &v); const Matrix33 & operator = (T a); //---------------------- // Compatibility with Sb //---------------------- T * getValue (); const T * getValue () const; template <class S> void getValue (Matrix33<S> &v) const; template <class S> Matrix33 & setValue (const Matrix33<S> &v); template <class S> Matrix33 & setTheMatrix (const Matrix33<S> &v); //--------- // Identity //--------- void makeIdentity(); //--------- // Equality //--------- bool operator == (const Matrix33 &v) const; bool operator != (const Matrix33 &v) const; //----------------------------------------------------------------------- // Compare two matrices and test if they are "approximately equal": // // equalWithAbsError (m, e) // // Returns true if the coefficients of this and m are the same with // an absolute error of no more than e, i.e., for all i, j // // abs (this[i][j] - m[i][j]) <= e // // equalWithRelError (m, e) // // Returns true if the coefficients of this and m are the same with // a relative error of no more than e, i.e., for all i, j // // abs (this[i] - v[i][j]) <= e * abs (this[i][j]) //----------------------------------------------------------------------- bool equalWithAbsError (const Matrix33<T> &v, T e) const; bool equalWithRelError (const Matrix33<T> &v, T e) const; //------------------------ // Component-wise addition //------------------------ const Matrix33 & operator += (const Matrix33 &v); const Matrix33 & operator += (T a); Matrix33 operator + (const Matrix33 &v) const; //--------------------------- // Component-wise subtraction //--------------------------- const Matrix33 & operator -= (const Matrix33 &v); const Matrix33 & operator -= (T a); Matrix33 operator - (const Matrix33 &v) const; //------------------------------------ // Component-wise multiplication by -1 //------------------------------------ Matrix33 operator - () const; const Matrix33 & negate (); //------------------------------ // Component-wise multiplication //------------------------------ const Matrix33 & operator *= (T a); Matrix33 operator * (T a) const; //----------------------------------- // Matrix-times-matrix multiplication //----------------------------------- const Matrix33 & operator *= (const Matrix33 &v); Matrix33 operator * (const Matrix33 &v) const; //----------------------------------------------------------------- // Vector-times-matrix multiplication; see also the "operator *" // functions defined below. // // m.multVecMatrix(src,dst) implements a homogeneous transformation // by computing Vec3 (src.x, src.y, 1) * m and dividing by the // result's third element. // // m.multDirMatrix(src,dst) multiplies src by the upper left 2x2 // submatrix, ignoring the rest of matrix m. //----------------------------------------------------------------- template <class S> void multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const; template <class S> void multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const; //------------------------ // Component-wise division //------------------------ const Matrix33 & operator /= (T a); Matrix33 operator / (T a) const; //------------------ // Transposed matrix //------------------ const Matrix33 & transpose (); Matrix33 transposed () const; //------------------------------------------------------------ // Inverse matrix: If singExc is false, inverting a singular // matrix produces an identity matrix. If singExc is true, // inverting a singular matrix throws a SingMatrixExc. // // inverse() and invert() invert matrices using determinants; // gjInverse() and gjInvert() use the Gauss-Jordan method. // // inverse() and invert() are significantly faster than // gjInverse() and gjInvert(), but the results may be slightly // less accurate. // //------------------------------------------------------------ const Matrix33 & invert (bool singExc = false) throw (IEX_NAMESPACE::MathExc); Matrix33<T> inverse (bool singExc = false) const throw (IEX_NAMESPACE::MathExc); const Matrix33 & gjInvert (bool singExc = false) throw (IEX_NAMESPACE::MathExc); Matrix33<T> gjInverse (bool singExc = false) const throw (IEX_NAMESPACE::MathExc); //------------------------------------------------ // Calculate the matrix minor of the (r,c) element //------------------------------------------------ T minorOf (const int r, const int c) const; //--------------------------------------------------- // Build a minor using the specified rows and columns //--------------------------------------------------- T fastMinor (const int r0, const int r1, const int c0, const int c1) const; //------------ // Determinant //------------ T determinant() const; //----------------------------------------- // Set matrix to rotation by r (in radians) //----------------------------------------- template <class S> const Matrix33 & setRotation (S r); //----------------------------- // Rotate the given matrix by r //----------------------------- template <class S> const Matrix33 & rotate (S r); //-------------------------------------------- // Set matrix to scale by given uniform factor //-------------------------------------------- const Matrix33 & setScale (T s); //------------------------------------ // Set matrix to scale by given vector //------------------------------------ template <class S> const Matrix33 & setScale (const Vec2<S> &s); //---------------------- // Scale the matrix by s //---------------------- template <class S> const Matrix33 & scale (const Vec2<S> &s); //------------------------------------------ // Set matrix to translation by given vector //------------------------------------------ template <class S> const Matrix33 & setTranslation (const Vec2<S> &t); //----------------------------- // Return translation component //----------------------------- Vec2<T> translation () const; //-------------------------- // Translate the matrix by t //-------------------------- template <class S> const Matrix33 & translate (const Vec2<S> &t); //----------------------------------------------------------- // Set matrix to shear x for each y coord. by given factor xy //----------------------------------------------------------- template <class S> const Matrix33 & setShear (const S &h); //------------------------------------------------------------- // Set matrix to shear x for each y coord. by given factor h[0] // and to shear y for each x coord. by given factor h[1] //------------------------------------------------------------- template <class S> const Matrix33 & setShear (const Vec2<S> &h); //----------------------------------------------------------- // Shear the matrix in x for each y coord. by given factor xy //----------------------------------------------------------- template <class S> const Matrix33 & shear (const S &xy); //----------------------------------------------------------- // Shear the matrix in x for each y coord. by given factor xy // and shear y for each x coord. by given factor yx //----------------------------------------------------------- template <class S> const Matrix33 & shear (const Vec2<S> &h); //-------------------------------------------------------- // Number of the row and column dimensions, since // Matrix33 is a square matrix. //-------------------------------------------------------- static unsigned int dimensions() {return 3;} //------------------------------------------------- // Limitations of type T (see also class limits<T>) //------------------------------------------------- static T baseTypeMin() {return limits<T>::min();} static T baseTypeMax() {return limits<T>::max();} static T baseTypeSmallest() {return limits<T>::smallest();} static T baseTypeEpsilon() {return limits<T>::epsilon();} typedef T BaseType; typedef Vec3<T> BaseVecType; private: template <typename R, typename S> struct isSameType { enum {value = 0}; }; template <typename R> struct isSameType<R, R> { enum {value = 1}; }; }; template <class T> class Matrix44 { public: //------------------- // Access to elements //------------------- T x[4][4]; T * operator [] (int i); const T * operator [] (int i) const; //------------- // Constructors //------------- Matrix44 (Uninitialized) {} Matrix44 (); // 1 0 0 0 // 0 1 0 0 // 0 0 1 0 // 0 0 0 1 Matrix44 (T a); // a a a a // a a a a // a a a a // a a a a Matrix44 (const T a[4][4]) ; // a[0][0] a[0][1] a[0][2] a[0][3] // a[1][0] a[1][1] a[1][2] a[1][3] // a[2][0] a[2][1] a[2][2] a[2][3] // a[3][0] a[3][1] a[3][2] a[3][3] Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h, T i, T j, T k, T l, T m, T n, T o, T p); // a b c d // e f g h // i j k l // m n o p Matrix44 (Matrix33<T> r, Vec3<T> t); // r r r 0 // r r r 0 // r r r 0 // t t t 1 //-------------------------------- // Copy constructor and assignment //-------------------------------- Matrix44 (const Matrix44 &v); template <class S> explicit Matrix44 (const Matrix44<S> &v); const Matrix44 & operator = (const Matrix44 &v); const Matrix44 & operator = (T a); //---------------------- // Compatibility with Sb //---------------------- T * getValue (); const T * getValue () const; template <class S> void getValue (Matrix44<S> &v) const; template <class S> Matrix44 & setValue (const Matrix44<S> &v); template <class S> Matrix44 & setTheMatrix (const Matrix44<S> &v); //--------- // Identity //--------- void makeIdentity(); //--------- // Equality //--------- bool operator == (const Matrix44 &v) const; bool operator != (const Matrix44 &v) const; //----------------------------------------------------------------------- // Compare two matrices and test if they are "approximately equal": // // equalWithAbsError (m, e) // // Returns true if the coefficients of this and m are the same with // an absolute error of no more than e, i.e., for all i, j // // abs (this[i][j] - m[i][j]) <= e // // equalWithRelError (m, e) // // Returns true if the coefficients of this and m are the same with // a relative error of no more than e, i.e., for all i, j // // abs (this[i] - v[i][j]) <= e * abs (this[i][j]) //----------------------------------------------------------------------- bool equalWithAbsError (const Matrix44<T> &v, T e) const; bool equalWithRelError (const Matrix44<T> &v, T e) const; //------------------------ // Component-wise addition //------------------------ const Matrix44 & operator += (const Matrix44 &v); const Matrix44 & operator += (T a); Matrix44 operator + (const Matrix44 &v) const; //--------------------------- // Component-wise subtraction //--------------------------- const Matrix44 & operator -= (const Matrix44 &v); const Matrix44 & operator -= (T a); Matrix44 operator - (const Matrix44 &v) const; //------------------------------------ // Component-wise multiplication by -1 //------------------------------------ Matrix44 operator - () const; const Matrix44 & negate (); //------------------------------ // Component-wise multiplication //------------------------------ const Matrix44 & operator *= (T a); Matrix44 operator * (T a) const; //----------------------------------- // Matrix-times-matrix multiplication //----------------------------------- const Matrix44 & operator *= (const Matrix44 &v); Matrix44 operator * (const Matrix44 &v) const; static void multiply (const Matrix44 &a, // assumes that const Matrix44 &b, // &a != &c and Matrix44 &c); // &b != &c. //----------------------------------------------------------------- // Vector-times-matrix multiplication; see also the "operator *" // functions defined below. // // m.multVecMatrix(src,dst) implements a homogeneous transformation // by computing Vec4 (src.x, src.y, src.z, 1) * m and dividing by // the result's third element. // // m.multDirMatrix(src,dst) multiplies src by the upper left 3x3 // submatrix, ignoring the rest of matrix m. //----------------------------------------------------------------- template <class S> void multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const; template <class S> void multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const; //------------------------ // Component-wise division //------------------------ const Matrix44 & operator /= (T a); Matrix44 operator / (T a) const; //------------------ // Transposed matrix //------------------ const Matrix44 & transpose (); Matrix44 transposed () const; //------------------------------------------------------------ // Inverse matrix: If singExc is false, inverting a singular // matrix produces an identity matrix. If singExc is true, // inverting a singular matrix throws a SingMatrixExc. // // inverse() and invert() invert matrices using determinants; // gjInverse() and gjInvert() use the Gauss-Jordan method. // // inverse() and invert() are significantly faster than // gjInverse() and gjInvert(), but the results may be slightly // less accurate. // //------------------------------------------------------------ const Matrix44 & invert (bool singExc = false) throw (IEX_NAMESPACE::MathExc); Matrix44<T> inverse (bool singExc = false) const throw (IEX_NAMESPACE::MathExc); const Matrix44 & gjInvert (bool singExc = false) throw (IEX_NAMESPACE::MathExc); Matrix44<T> gjInverse (bool singExc = false) const throw (IEX_NAMESPACE::MathExc); //------------------------------------------------ // Calculate the matrix minor of the (r,c) element //------------------------------------------------ T minorOf (const int r, const int c) const; //--------------------------------------------------- // Build a minor using the specified rows and columns //--------------------------------------------------- T fastMinor (const int r0, const int r1, const int r2, const int c0, const int c1, const int c2) const; //------------ // Determinant //------------ T determinant() const; //-------------------------------------------------------- // Set matrix to rotation by XYZ euler angles (in radians) //-------------------------------------------------------- template <class S> const Matrix44 & setEulerAngles (const Vec3<S>& r); //-------------------------------------------------------- // Set matrix to rotation around given axis by given angle //-------------------------------------------------------- template <class S> const Matrix44 & setAxisAngle (const Vec3<S>& ax, S ang); //------------------------------------------- // Rotate the matrix by XYZ euler angles in r //------------------------------------------- template <class S> const Matrix44 & rotate (const Vec3<S> &r); //-------------------------------------------- // Set matrix to scale by given uniform factor //-------------------------------------------- const Matrix44 & setScale (T s); //------------------------------------ // Set matrix to scale by given vector //------------------------------------ template <class S> const Matrix44 & setScale (const Vec3<S> &s); //---------------------- // Scale the matrix by s //---------------------- template <class S> const Matrix44 & scale (const Vec3<S> &s); //------------------------------------------ // Set matrix to translation by given vector //------------------------------------------ template <class S> const Matrix44 & setTranslation (const Vec3<S> &t); //----------------------------- // Return translation component //----------------------------- const Vec3<T> translation () const; //-------------------------- // Translate the matrix by t //-------------------------- template <class S> const Matrix44 & translate (const Vec3<S> &t); //------------------------------------------------------------- // Set matrix to shear by given vector h. The resulting matrix // will shear x for each y coord. by a factor of h[0] ; // will shear x for each z coord. by a factor of h[1] ; // will shear y for each z coord. by a factor of h[2] . //------------------------------------------------------------- template <class S> const Matrix44 & setShear (const Vec3<S> &h); //------------------------------------------------------------ // Set matrix to shear by given factors. The resulting matrix // will shear x for each y coord. by a factor of h.xy ; // will shear x for each z coord. by a factor of h.xz ; // will shear y for each z coord. by a factor of h.yz ; // will shear y for each x coord. by a factor of h.yx ; // will shear z for each x coord. by a factor of h.zx ; // will shear z for each y coord. by a factor of h.zy . //------------------------------------------------------------ template <class S> const Matrix44 & setShear (const Shear6<S> &h); //-------------------------------------------------------- // Shear the matrix by given vector. The composed matrix // will be <shear> * <this>, where the shear matrix ... // will shear x for each y coord. by a factor of h[0] ; // will shear x for each z coord. by a factor of h[1] ; // will shear y for each z coord. by a factor of h[2] . //-------------------------------------------------------- template <class S> const Matrix44 & shear (const Vec3<S> &h); //-------------------------------------------------------- // Number of the row and column dimensions, since // Matrix44 is a square matrix. //-------------------------------------------------------- static unsigned int dimensions() {return 4;} //------------------------------------------------------------ // Shear the matrix by the given factors. The composed matrix // will be <shear> * <this>, where the shear matrix ... // will shear x for each y coord. by a factor of h.xy ; // will shear x for each z coord. by a factor of h.xz ; // will shear y for each z coord. by a factor of h.yz ; // will shear y for each x coord. by a factor of h.yx ; // will shear z for each x coord. by a factor of h.zx ; // will shear z for each y coord. by a factor of h.zy . //------------------------------------------------------------ template <class S> const Matrix44 & shear (const Shear6<S> &h); //------------------------------------------------- // Limitations of type T (see also class limits<T>) //------------------------------------------------- static T baseTypeMin() {return limits<T>::min();} static T baseTypeMax() {return limits<T>::max();} static T baseTypeSmallest() {return limits<T>::smallest();} static T baseTypeEpsilon() {return limits<T>::epsilon();} typedef T BaseType; typedef Vec4<T> BaseVecType; private: template <typename R, typename S> struct isSameType { enum {value = 0}; }; template <typename R> struct isSameType<R, R> { enum {value = 1}; }; }; //-------------- // Stream output //-------------- template <class T> std::ostream & operator << (std::ostream & s, const Matrix33<T> &m); template <class T> std::ostream & operator << (std::ostream & s, const Matrix44<T> &m); //--------------------------------------------- // Vector-times-matrix multiplication operators //--------------------------------------------- template <class S, class T> const Vec2<S> & operator *= (Vec2<S> &v, const Matrix33<T> &m); template <class S, class T> Vec2<S> operator * (const Vec2<S> &v, const Matrix33<T> &m); template <class S, class T> const Vec3<S> & operator *= (Vec3<S> &v, const Matrix33<T> &m); template <class S, class T> Vec3<S> operator * (const Vec3<S> &v, const Matrix33<T> &m); template <class S, class T> const Vec3<S> & operator *= (Vec3<S> &v, const Matrix44<T> &m); template <class S, class T> Vec3<S> operator * (const Vec3<S> &v, const Matrix44<T> &m); template <class S, class T> const Vec4<S> & operator *= (Vec4<S> &v, const Matrix44<T> &m); template <class S, class T> Vec4<S> operator * (const Vec4<S> &v, const Matrix44<T> &m); //------------------------- // Typedefs for convenience //------------------------- typedef Matrix33 <float> M33f; typedef Matrix33 <double> M33d; typedef Matrix44 <float> M44f; typedef Matrix44 <double> M44d; //--------------------------- // Implementation of Matrix33 //--------------------------- template <class T> inline T * Matrix33<T>::operator [] (int i) { return x[i]; } template <class T> inline const T * Matrix33<T>::operator [] (int i) const { return x[i]; } template <class T> inline Matrix33<T>::Matrix33 () { memset (x, 0, sizeof (x)); x[0][0] = 1; x[1][1] = 1; x[2][2] = 1; } template <class T> inline Matrix33<T>::Matrix33 (T a) { x[0][0] = a; x[0][1] = a; x[0][2] = a; x[1][0] = a; x[1][1] = a; x[1][2] = a; x[2][0] = a; x[2][1] = a; x[2][2] = a; } template <class T> inline Matrix33<T>::Matrix33 (const T a[3][3]) { memcpy (x, a, sizeof (x)); } template <class T> inline Matrix33<T>::Matrix33 (T a, T b, T c, T d, T e, T f, T g, T h, T i) { x[0][0] = a; x[0][1] = b; x[0][2] = c; x[1][0] = d; x[1][1] = e; x[1][2] = f; x[2][0] = g; x[2][1] = h; x[2][2] = i; } template <class T> inline Matrix33<T>::Matrix33 (const Matrix33 &v) { memcpy (x, v.x, sizeof (x)); } template <class T> template <class S> inline Matrix33<T>::Matrix33 (const Matrix33<S> &v) { x[0][0] = T (v.x[0][0]); x[0][1] = T (v.x[0][1]); x[0][2] = T (v.x[0][2]); x[1][0] = T (v.x[1][0]); x[1][1] = T (v.x[1][1]); x[1][2] = T (v.x[1][2]); x[2][0] = T (v.x[2][0]); x[2][1] = T (v.x[2][1]); x[2][2] = T (v.x[2][2]); } template <class T> inline const Matrix33<T> & Matrix33<T>::operator = (const Matrix33 &v) { memcpy (x, v.x, sizeof (x)); return *this; } template <class T> inline const Matrix33<T> & Matrix33<T>::operator = (T a) { x[0][0] = a; x[0][1] = a; x[0][2] = a; x[1][0] = a; x[1][1] = a; x[1][2] = a; x[2][0] = a; x[2][1] = a; x[2][2] = a; return *this; } template <class T> inline T * Matrix33<T>::getValue () { return (T *) &x[0][0]; } template <class T> inline const T * Matrix33<T>::getValue () const { return (const T *) &x[0][0]; } template <class T> template <class S> inline void Matrix33<T>::getValue (Matrix33<S> &v) const { if (isSameType<S,T>::value) { memcpy (v.x, x, sizeof (x)); } else { v.x[0][0] = x[0][0]; v.x[0][1] = x[0][1]; v.x[0][2] = x[0][2]; v.x[1][0] = x[1][0]; v.x[1][1] = x[1][1]; v.x[1][2] = x[1][2]; v.x[2][0] = x[2][0]; v.x[2][1] = x[2][1]; v.x[2][2] = x[2][2]; } } template <class T> template <class S> inline Matrix33<T> & Matrix33<T>::setValue (const Matrix33<S> &v) { if (isSameType<S,T>::value) { memcpy (x, v.x, sizeof (x)); } else { x[0][0] = v.x[0][0]; x[0][1] = v.x[0][1]; x[0][2] = v.x[0][2]; x[1][0] = v.x[1][0]; x[1][1] = v.x[1][1]; x[1][2] = v.x[1][2]; x[2][0] = v.x[2][0]; x[2][1] = v.x[2][1]; x[2][2] = v.x[2][2]; } return *this; } template <class T> template <class S> inline Matrix33<T> & Matrix33<T>::setTheMatrix (const Matrix33<S> &v) { if (isSameType<S,T>::value) { memcpy (x, v.x, sizeof (x)); } else { x[0][0] = v.x[0][0]; x[0][1] = v.x[0][1]; x[0][2] = v.x[0][2]; x[1][0] = v.x[1][0]; x[1][1] = v.x[1][1]; x[1][2] = v.x[1][2]; x[2][0] = v.x[2][0]; x[2][1] = v.x[2][1]; x[2][2] = v.x[2][2]; } return *this; } template <class T> inline void Matrix33<T>::makeIdentity() { memset (x, 0, sizeof (x)); x[0][0] = 1; x[1][1] = 1; x[2][2] = 1; } template <class T> bool Matrix33<T>::operator == (const Matrix33 &v) const { return x[0][0] == v.x[0][0] && x[0][1] == v.x[0][1] && x[0][2] == v.x[0][2] && x[1][0] == v.x[1][0] && x[1][1] == v.x[1][1] && x[1][2] == v.x[1][2] && x[2][0] == v.x[2][0] && x[2][1] == v.x[2][1] && x[2][2] == v.x[2][2]; } template <class T> bool Matrix33<T>::operator != (const Matrix33 &v) const { return x[0][0] != v.x[0][0] || x[0][1] != v.x[0][1] || x[0][2] != v.x[0][2] || x[1][0] != v.x[1][0] || x[1][1] != v.x[1][1] || x[1][2] != v.x[1][2] || x[2][0] != v.x[2][0] || x[2][1] != v.x[2][1] || x[2][2] != v.x[2][2]; } template <class T> bool Matrix33<T>::equalWithAbsError (const Matrix33<T> &m, T e) const { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i][j], m[i][j], e)) return false; return true; } template <class T> bool Matrix33<T>::equalWithRelError (const Matrix33<T> &m, T e) const { for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i][j], m[i][j], e)) return false; return true; } template <class T> const Matrix33<T> & Matrix33<T>::operator += (const Matrix33<T> &v) { x[0][0] += v.x[0][0]; x[0][1] += v.x[0][1]; x[0][2] += v.x[0][2]; x[1][0] += v.x[1][0]; x[1][1] += v.x[1][1]; x[1][2] += v.x[1][2]; x[2][0] += v.x[2][0]; x[2][1] += v.x[2][1]; x[2][2] += v.x[2][2]; return *this; } template <class T> const Matrix33<T> & Matrix33<T>::operator += (T a) { x[0][0] += a; x[0][1] += a; x[0][2] += a; x[1][0] += a; x[1][1] += a; x[1][2] += a; x[2][0] += a; x[2][1] += a; x[2][2] += a; return *this; } template <class T> Matrix33<T> Matrix33<T>::operator + (const Matrix33<T> &v) const { return Matrix33 (x[0][0] + v.x[0][0], x[0][1] + v.x[0][1], x[0][2] + v.x[0][2], x[1][0] + v.x[1][0], x[1][1] + v.x[1][1], x[1][2] + v.x[1][2], x[2][0] + v.x[2][0], x[2][1] + v.x[2][1], x[2][2] + v.x[2][2]); } template <class T> const Matrix33<T> & Matrix33<T>::operator -= (const Matrix33<T> &v) { x[0][0] -= v.x[0][0]; x[0][1] -= v.x[0][1]; x[0][2] -= v.x[0][2]; x[1][0] -= v.x[1][0]; x[1][1] -= v.x[1][1]; x[1][2] -= v.x[1][2]; x[2][0] -= v.x[2][0]; x[2][1] -= v.x[2][1]; x[2][2] -= v.x[2][2]; return *this; } template <class T> const Matrix33<T> & Matrix33<T>::operator -= (T a) { x[0][0] -= a; x[0][1] -= a; x[0][2] -= a; x[1][0] -= a; x[1][1] -= a; x[1][2] -= a; x[2][0] -= a; x[2][1] -= a; x[2][2] -= a; return *this; } template <class T> Matrix33<T> Matrix33<T>::operator - (const Matrix33<T> &v) const { return Matrix33 (x[0][0] - v.x[0][0], x[0][1] - v.x[0][1], x[0][2] - v.x[0][2], x[1][0] - v.x[1][0], x[1][1] - v.x[1][1], x[1][2] - v.x[1][2], x[2][0] - v.x[2][0], x[2][1] - v.x[2][1], x[2][2] - v.x[2][2]); } template <class T> Matrix33<T> Matrix33<T>::operator - () const { return Matrix33 (-x[0][0], -x[0][1], -x[0][2], -x[1][0], -x[1][1], -x[1][2], -x[2][0], -x[2][1], -x[2][2]); } template <class T> const Matrix33<T> & Matrix33<T>::negate () { x[0][0] = -x[0][0]; x[0][1] = -x[0][1]; x[0][2] = -x[0][2]; x[1][0] = -x[1][0]; x[1][1] = -x[1][1]; x[1][2] = -x[1][2]; x[2][0] = -x[2][0]; x[2][1] = -x[2][1]; x[2][2] = -x[2][2]; return *this; } template <class T> const Matrix33<T> & Matrix33<T>::operator *= (T a) { x[0][0] *= a; x[0][1] *= a; x[0][2] *= a; x[1][0] *= a; x[1][1] *= a; x[1][2] *= a; x[2][0] *= a; x[2][1] *= a; x[2][2] *= a; return *this; } template <class T> Matrix33<T> Matrix33<T>::operator * (T a) const { return Matrix33 (x[0][0] * a, x[0][1] * a, x[0][2] * a, x[1][0] * a, x[1][1] * a, x[1][2] * a, x[2][0] * a, x[2][1] * a, x[2][2] * a); } template <class T> inline Matrix33<T> operator * (T a, const Matrix33<T> &v) { return v * a; } template <class T> const Matrix33<T> & Matrix33<T>::operator *= (const Matrix33<T> &v) { Matrix33 tmp (T (0)); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) tmp.x[i][j] += x[i][k] * v.x[k][j]; *this = tmp; return *this; } template <class T> Matrix33<T> Matrix33<T>::operator * (const Matrix33<T> &v) const { Matrix33 tmp (T (0)); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) for (int k = 0; k < 3; k++) tmp.x[i][j] += x[i][k] * v.x[k][j]; return tmp; } template <class T> template <class S> void Matrix33<T>::multVecMatrix(const Vec2<S> &src, Vec2<S> &dst) const { S a, b, w; a = src[0] * x[0][0] + src[1] * x[1][0] + x[2][0]; b = src[0] * x[0][1] + src[1] * x[1][1] + x[2][1]; w = src[0] * x[0][2] + src[1] * x[1][2] + x[2][2]; dst.x = a / w; dst.y = b / w; } template <class T> template <class S> void Matrix33<T>::multDirMatrix(const Vec2<S> &src, Vec2<S> &dst) const { S a, b; a = src[0] * x[0][0] + src[1] * x[1][0]; b = src[0] * x[0][1] + src[1] * x[1][1]; dst.x = a; dst.y = b; } template <class T> const Matrix33<T> & Matrix33<T>::operator /= (T a) { x[0][0] /= a; x[0][1] /= a; x[0][2] /= a; x[1][0] /= a; x[1][1] /= a; x[1][2] /= a; x[2][0] /= a; x[2][1] /= a; x[2][2] /= a; return *this; } template <class T> Matrix33<T> Matrix33<T>::operator / (T a) const { return Matrix33 (x[0][0] / a, x[0][1] / a, x[0][2] / a, x[1][0] / a, x[1][1] / a, x[1][2] / a, x[2][0] / a, x[2][1] / a, x[2][2] / a); } template <class T> const Matrix33<T> & Matrix33<T>::transpose () { Matrix33 tmp (x[0][0], x[1][0], x[2][0], x[0][1], x[1][1], x[2][1], x[0][2], x[1][2], x[2][2]); *this = tmp; return *this; } template <class T> Matrix33<T> Matrix33<T>::transposed () const { return Matrix33 (x[0][0], x[1][0], x[2][0], x[0][1], x[1][1], x[2][1], x[0][2], x[1][2], x[2][2]); } template <class T> const Matrix33<T> & Matrix33<T>::gjInvert (bool singExc) throw (IEX_NAMESPACE::MathExc) { *this = gjInverse (singExc); return *this; } template <class T> Matrix33<T> Matrix33<T>::gjInverse (bool singExc) const throw (IEX_NAMESPACE::MathExc) { int i, j, k; Matrix33 s; Matrix33 t (*this); // Forward elimination for (i = 0; i < 2 ; i++) { int pivot = i; T pivotsize = t[i][i]; if (pivotsize < 0) pivotsize = -pivotsize; for (j = i + 1; j < 3; j++) { T tmp = t[j][i]; if (tmp < 0) tmp = -tmp; if (tmp > pivotsize) { pivot = j; pivotsize = tmp; } } if (pivotsize == 0) { if (singExc) throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix."); return Matrix33(); } if (pivot != i) { for (j = 0; j < 3; j++) { T tmp; tmp = t[i][j]; t[i][j] = t[pivot][j]; t[pivot][j] = tmp; tmp = s[i][j]; s[i][j] = s[pivot][j]; s[pivot][j] = tmp; } } for (j = i + 1; j < 3; j++) { T f = t[j][i] / t[i][i]; for (k = 0; k < 3; k++) { t[j][k] -= f * t[i][k]; s[j][k] -= f * s[i][k]; } } } // Backward substitution for (i = 2; i >= 0; --i) { T f; if ((f = t[i][i]) == 0) { if (singExc) throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix."); return Matrix33(); } for (j = 0; j < 3; j++) { t[i][j] /= f; s[i][j] /= f; } for (j = 0; j < i; j++) { f = t[j][i]; for (k = 0; k < 3; k++) { t[j][k] -= f * t[i][k]; s[j][k] -= f * s[i][k]; } } } return s; } template <class T> const Matrix33<T> & Matrix33<T>::invert (bool singExc) throw (IEX_NAMESPACE::MathExc) { *this = inverse (singExc); return *this; } template <class T> Matrix33<T> Matrix33<T>::inverse (bool singExc) const throw (IEX_NAMESPACE::MathExc) { if (x[0][2] != 0 || x[1][2] != 0 || x[2][2] != 1) { Matrix33 s (x[1][1] * x[2][2] - x[2][1] * x[1][2], x[2][1] * x[0][2] - x[0][1] * x[2][2], x[0][1] * x[1][2] - x[1][1] * x[0][2], x[2][0] * x[1][2] - x[1][0] * x[2][2], x[0][0] * x[2][2] - x[2][0] * x[0][2], x[1][0] * x[0][2] - x[0][0] * x[1][2], x[1][0] * x[2][1] - x[2][0] * x[1][1], x[2][0] * x[0][1] - x[0][0] * x[2][1], x[0][0] * x[1][1] - x[1][0] * x[0][1]); T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0]; if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1) { for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { s[i][j] /= r; } } } else { T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest(); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j])) { s[i][j] /= r; } else { if (singExc) throw SingMatrixExc ("Cannot invert " "singular matrix."); return Matrix33(); } } } } return s; } else { Matrix33 s ( x[1][1], -x[0][1], 0, -x[1][0], x[0][0], 0, 0, 0, 1); T r = x[0][0] * x[1][1] - x[1][0] * x[0][1]; if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1) { for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { s[i][j] /= r; } } } else { T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest(); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 2; ++j) { if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j])) { s[i][j] /= r; } else { if (singExc) throw SingMatrixExc ("Cannot invert " "singular matrix."); return Matrix33(); } } } } s[2][0] = -x[2][0] * s[0][0] - x[2][1] * s[1][0]; s[2][1] = -x[2][0] * s[0][1] - x[2][1] * s[1][1]; return s; } } template <class T> inline T Matrix33<T>::minorOf (const int r, const int c) const { int r0 = 0 + (r < 1 ? 1 : 0); int r1 = 1 + (r < 2 ? 1 : 0); int c0 = 0 + (c < 1 ? 1 : 0); int c1 = 1 + (c < 2 ? 1 : 0); return x[r0][c0]*x[r1][c1] - x[r1][c0]*x[r0][c1]; } template <class T> inline T Matrix33<T>::fastMinor( const int r0, const int r1, const int c0, const int c1) const { return x[r0][c0]*x[r1][c1] - x[r0][c1]*x[r1][c0]; } template <class T> inline T Matrix33<T>::determinant () const { return x[0][0]*(x[1][1]*x[2][2] - x[1][2]*x[2][1]) + x[0][1]*(x[1][2]*x[2][0] - x[1][0]*x[2][2]) + x[0][2]*(x[1][0]*x[2][1] - x[1][1]*x[2][0]); } template <class T> template <class S> const Matrix33<T> & Matrix33<T>::setRotation (S r) { S cos_r, sin_r; cos_r = Math<T>::cos (r); sin_r = Math<T>::sin (r); x[0][0] = cos_r; x[0][1] = sin_r; x[0][2] = 0; x[1][0] = -sin_r; x[1][1] = cos_r; x[1][2] = 0; x[2][0] = 0; x[2][1] = 0; x[2][2] = 1; return *this; } template <class T> template <class S> const Matrix33<T> & Matrix33<T>::rotate (S r) { *this *= Matrix33<T>().setRotation (r); return *this; } template <class T> const Matrix33<T> & Matrix33<T>::setScale (T s) { memset (x, 0, sizeof (x)); x[0][0] = s; x[1][1] = s; x[2][2] = 1; return *this; } template <class T> template <class S> const Matrix33<T> & Matrix33<T>::setScale (const Vec2<S> &s) { memset (x, 0, sizeof (x)); x[0][0] = s[0]; x[1][1] = s[1]; x[2][2] = 1; return *this; } template <class T> template <class S> const Matrix33<T> & Matrix33<T>::scale (const Vec2<S> &s) { x[0][0] *= s[0]; x[0][1] *= s[0]; x[0][2] *= s[0]; x[1][0] *= s[1]; x[1][1] *= s[1]; x[1][2] *= s[1]; return *this; } template <class T> template <class S> const Matrix33<T> & Matrix33<T>::setTranslation (const Vec2<S> &t) { x[0][0] = 1; x[0][1] = 0; x[0][2] = 0; x[1][0] = 0; x[1][1] = 1; x[1][2] = 0; x[2][0] = t[0]; x[2][1] = t[1]; x[2][2] = 1; return *this; } template <class T> inline Vec2<T> Matrix33<T>::translation () const { return Vec2<T> (x[2][0], x[2][1]); } template <class T> template <class S> const Matrix33<T> & Matrix33<T>::translate (const Vec2<S> &t) { x[2][0] += t[0] * x[0][0] + t[1] * x[1][0]; x[2][1] += t[0] * x[0][1] + t[1] * x[1][1]; x[2][2] += t[0] * x[0][2] + t[1] * x[1][2]; return *this; } template <class T> template <class S> const Matrix33<T> & Matrix33<T>::setShear (const S &xy) { x[0][0] = 1; x[0][1] = 0; x[0][2] = 0; x[1][0] = xy; x[1][1] = 1; x[1][2] = 0; x[2][0] = 0; x[2][1] = 0; x[2][2] = 1; return *this; } template <class T> template <class S> const Matrix33<T> & Matrix33<T>::setShear (const Vec2<S> &h) { x[0][0] = 1; x[0][1] = h[1]; x[0][2] = 0; x[1][0] = h[0]; x[1][1] = 1; x[1][2] = 0; x[2][0] = 0; x[2][1] = 0; x[2][2] = 1; return *this; } template <class T> template <class S> const Matrix33<T> & Matrix33<T>::shear (const S &xy) { // // In this case, we don't need a temp. copy of the matrix // because we never use a value on the RHS after we've // changed it on the LHS. // x[1][0] += xy * x[0][0]; x[1][1] += xy * x[0][1]; x[1][2] += xy * x[0][2]; return *this; } template <class T> template <class S> const Matrix33<T> & Matrix33<T>::shear (const Vec2<S> &h) { Matrix33<T> P (*this); x[0][0] = P[0][0] + h[1] * P[1][0]; x[0][1] = P[0][1] + h[1] * P[1][1]; x[0][2] = P[0][2] + h[1] * P[1][2]; x[1][0] = P[1][0] + h[0] * P[0][0]; x[1][1] = P[1][1] + h[0] * P[0][1]; x[1][2] = P[1][2] + h[0] * P[0][2]; return *this; } //--------------------------- // Implementation of Matrix44 //--------------------------- template <class T> inline T * Matrix44<T>::operator [] (int i) { return x[i]; } template <class T> inline const T * Matrix44<T>::operator [] (int i) const { return x[i]; } template <class T> inline Matrix44<T>::Matrix44 () { memset (x, 0, sizeof (x)); x[0][0] = 1; x[1][1] = 1; x[2][2] = 1; x[3][3] = 1; } template <class T> inline Matrix44<T>::Matrix44 (T a) { x[0][0] = a; x[0][1] = a; x[0][2] = a; x[0][3] = a; x[1][0] = a; x[1][1] = a; x[1][2] = a; x[1][3] = a; x[2][0] = a; x[2][1] = a; x[2][2] = a; x[2][3] = a; x[3][0] = a; x[3][1] = a; x[3][2] = a; x[3][3] = a; } template <class T> inline Matrix44<T>::Matrix44 (const T a[4][4]) { memcpy (x, a, sizeof (x)); } template <class T> inline Matrix44<T>::Matrix44 (T a, T b, T c, T d, T e, T f, T g, T h, T i, T j, T k, T l, T m, T n, T o, T p) { x[0][0] = a; x[0][1] = b; x[0][2] = c; x[0][3] = d; x[1][0] = e; x[1][1] = f; x[1][2] = g; x[1][3] = h; x[2][0] = i; x[2][1] = j; x[2][2] = k; x[2][3] = l; x[3][0] = m; x[3][1] = n; x[3][2] = o; x[3][3] = p; } template <class T> inline Matrix44<T>::Matrix44 (Matrix33<T> r, Vec3<T> t) { x[0][0] = r[0][0]; x[0][1] = r[0][1]; x[0][2] = r[0][2]; x[0][3] = 0; x[1][0] = r[1][0]; x[1][1] = r[1][1]; x[1][2] = r[1][2]; x[1][3] = 0; x[2][0] = r[2][0]; x[2][1] = r[2][1]; x[2][2] = r[2][2]; x[2][3] = 0; x[3][0] = t[0]; x[3][1] = t[1]; x[3][2] = t[2]; x[3][3] = 1; } template <class T> inline Matrix44<T>::Matrix44 (const Matrix44 &v) { x[0][0] = v.x[0][0]; x[0][1] = v.x[0][1]; x[0][2] = v.x[0][2]; x[0][3] = v.x[0][3]; x[1][0] = v.x[1][0]; x[1][1] = v.x[1][1]; x[1][2] = v.x[1][2]; x[1][3] = v.x[1][3]; x[2][0] = v.x[2][0]; x[2][1] = v.x[2][1]; x[2][2] = v.x[2][2]; x[2][3] = v.x[2][3]; x[3][0] = v.x[3][0]; x[3][1] = v.x[3][1]; x[3][2] = v.x[3][2]; x[3][3] = v.x[3][3]; } template <class T> template <class S> inline Matrix44<T>::Matrix44 (const Matrix44<S> &v) { x[0][0] = T (v.x[0][0]); x[0][1] = T (v.x[0][1]); x[0][2] = T (v.x[0][2]); x[0][3] = T (v.x[0][3]); x[1][0] = T (v.x[1][0]); x[1][1] = T (v.x[1][1]); x[1][2] = T (v.x[1][2]); x[1][3] = T (v.x[1][3]); x[2][0] = T (v.x[2][0]); x[2][1] = T (v.x[2][1]); x[2][2] = T (v.x[2][2]); x[2][3] = T (v.x[2][3]); x[3][0] = T (v.x[3][0]); x[3][1] = T (v.x[3][1]); x[3][2] = T (v.x[3][2]); x[3][3] = T (v.x[3][3]); } template <class T> inline const Matrix44<T> & Matrix44<T>::operator = (const Matrix44 &v) { x[0][0] = v.x[0][0]; x[0][1] = v.x[0][1]; x[0][2] = v.x[0][2]; x[0][3] = v.x[0][3]; x[1][0] = v.x[1][0]; x[1][1] = v.x[1][1]; x[1][2] = v.x[1][2]; x[1][3] = v.x[1][3]; x[2][0] = v.x[2][0]; x[2][1] = v.x[2][1]; x[2][2] = v.x[2][2]; x[2][3] = v.x[2][3]; x[3][0] = v.x[3][0]; x[3][1] = v.x[3][1]; x[3][2] = v.x[3][2]; x[3][3] = v.x[3][3]; return *this; } template <class T> inline const Matrix44<T> & Matrix44<T>::operator = (T a) { x[0][0] = a; x[0][1] = a; x[0][2] = a; x[0][3] = a; x[1][0] = a; x[1][1] = a; x[1][2] = a; x[1][3] = a; x[2][0] = a; x[2][1] = a; x[2][2] = a; x[2][3] = a; x[3][0] = a; x[3][1] = a; x[3][2] = a; x[3][3] = a; return *this; } template <class T> inline T * Matrix44<T>::getValue () { return (T *) &x[0][0]; } template <class T> inline const T * Matrix44<T>::getValue () const { return (const T *) &x[0][0]; } template <class T> template <class S> inline void Matrix44<T>::getValue (Matrix44<S> &v) const { if (isSameType<S,T>::value) { memcpy (v.x, x, sizeof (x)); } else { v.x[0][0] = x[0][0]; v.x[0][1] = x[0][1]; v.x[0][2] = x[0][2]; v.x[0][3] = x[0][3]; v.x[1][0] = x[1][0]; v.x[1][1] = x[1][1]; v.x[1][2] = x[1][2]; v.x[1][3] = x[1][3]; v.x[2][0] = x[2][0]; v.x[2][1] = x[2][1]; v.x[2][2] = x[2][2]; v.x[2][3] = x[2][3]; v.x[3][0] = x[3][0]; v.x[3][1] = x[3][1]; v.x[3][2] = x[3][2]; v.x[3][3] = x[3][3]; } } template <class T> template <class S> inline Matrix44<T> & Matrix44<T>::setValue (const Matrix44<S> &v) { if (isSameType<S,T>::value) { memcpy (x, v.x, sizeof (x)); } else { x[0][0] = v.x[0][0]; x[0][1] = v.x[0][1]; x[0][2] = v.x[0][2]; x[0][3] = v.x[0][3]; x[1][0] = v.x[1][0]; x[1][1] = v.x[1][1]; x[1][2] = v.x[1][2]; x[1][3] = v.x[1][3]; x[2][0] = v.x[2][0]; x[2][1] = v.x[2][1]; x[2][2] = v.x[2][2]; x[2][3] = v.x[2][3]; x[3][0] = v.x[3][0]; x[3][1] = v.x[3][1]; x[3][2] = v.x[3][2]; x[3][3] = v.x[3][3]; } return *this; } template <class T> template <class S> inline Matrix44<T> & Matrix44<T>::setTheMatrix (const Matrix44<S> &v) { if (isSameType<S,T>::value) { memcpy (x, v.x, sizeof (x)); } else { x[0][0] = v.x[0][0]; x[0][1] = v.x[0][1]; x[0][2] = v.x[0][2]; x[0][3] = v.x[0][3]; x[1][0] = v.x[1][0]; x[1][1] = v.x[1][1]; x[1][2] = v.x[1][2]; x[1][3] = v.x[1][3]; x[2][0] = v.x[2][0]; x[2][1] = v.x[2][1]; x[2][2] = v.x[2][2]; x[2][3] = v.x[2][3]; x[3][0] = v.x[3][0]; x[3][1] = v.x[3][1]; x[3][2] = v.x[3][2]; x[3][3] = v.x[3][3]; } return *this; } template <class T> inline void Matrix44<T>::makeIdentity() { memset (x, 0, sizeof (x)); x[0][0] = 1; x[1][1] = 1; x[2][2] = 1; x[3][3] = 1; } template <class T> bool Matrix44<T>::operator == (const Matrix44 &v) const { return x[0][0] == v.x[0][0] && x[0][1] == v.x[0][1] && x[0][2] == v.x[0][2] && x[0][3] == v.x[0][3] && x[1][0] == v.x[1][0] && x[1][1] == v.x[1][1] && x[1][2] == v.x[1][2] && x[1][3] == v.x[1][3] && x[2][0] == v.x[2][0] && x[2][1] == v.x[2][1] && x[2][2] == v.x[2][2] && x[2][3] == v.x[2][3] && x[3][0] == v.x[3][0] && x[3][1] == v.x[3][1] && x[3][2] == v.x[3][2] && x[3][3] == v.x[3][3]; } template <class T> bool Matrix44<T>::operator != (const Matrix44 &v) const { return x[0][0] != v.x[0][0] || x[0][1] != v.x[0][1] || x[0][2] != v.x[0][2] || x[0][3] != v.x[0][3] || x[1][0] != v.x[1][0] || x[1][1] != v.x[1][1] || x[1][2] != v.x[1][2] || x[1][3] != v.x[1][3] || x[2][0] != v.x[2][0] || x[2][1] != v.x[2][1] || x[2][2] != v.x[2][2] || x[2][3] != v.x[2][3] || x[3][0] != v.x[3][0] || x[3][1] != v.x[3][1] || x[3][2] != v.x[3][2] || x[3][3] != v.x[3][3]; } template <class T> bool Matrix44<T>::equalWithAbsError (const Matrix44<T> &m, T e) const { for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) if (!IMATH_INTERNAL_NAMESPACE::equalWithAbsError ((*this)[i][j], m[i][j], e)) return false; return true; } template <class T> bool Matrix44<T>::equalWithRelError (const Matrix44<T> &m, T e) const { for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) if (!IMATH_INTERNAL_NAMESPACE::equalWithRelError ((*this)[i][j], m[i][j], e)) return false; return true; } template <class T> const Matrix44<T> & Matrix44<T>::operator += (const Matrix44<T> &v) { x[0][0] += v.x[0][0]; x[0][1] += v.x[0][1]; x[0][2] += v.x[0][2]; x[0][3] += v.x[0][3]; x[1][0] += v.x[1][0]; x[1][1] += v.x[1][1]; x[1][2] += v.x[1][2]; x[1][3] += v.x[1][3]; x[2][0] += v.x[2][0]; x[2][1] += v.x[2][1]; x[2][2] += v.x[2][2]; x[2][3] += v.x[2][3]; x[3][0] += v.x[3][0]; x[3][1] += v.x[3][1]; x[3][2] += v.x[3][2]; x[3][3] += v.x[3][3]; return *this; } template <class T> const Matrix44<T> & Matrix44<T>::operator += (T a) { x[0][0] += a; x[0][1] += a; x[0][2] += a; x[0][3] += a; x[1][0] += a; x[1][1] += a; x[1][2] += a; x[1][3] += a; x[2][0] += a; x[2][1] += a; x[2][2] += a; x[2][3] += a; x[3][0] += a; x[3][1] += a; x[3][2] += a; x[3][3] += a; return *this; } template <class T> Matrix44<T> Matrix44<T>::operator + (const Matrix44<T> &v) const { return Matrix44 (x[0][0] + v.x[0][0], x[0][1] + v.x[0][1], x[0][2] + v.x[0][2], x[0][3] + v.x[0][3], x[1][0] + v.x[1][0], x[1][1] + v.x[1][1], x[1][2] + v.x[1][2], x[1][3] + v.x[1][3], x[2][0] + v.x[2][0], x[2][1] + v.x[2][1], x[2][2] + v.x[2][2], x[2][3] + v.x[2][3], x[3][0] + v.x[3][0], x[3][1] + v.x[3][1], x[3][2] + v.x[3][2], x[3][3] + v.x[3][3]); } template <class T> const Matrix44<T> & Matrix44<T>::operator -= (const Matrix44<T> &v) { x[0][0] -= v.x[0][0]; x[0][1] -= v.x[0][1]; x[0][2] -= v.x[0][2]; x[0][3] -= v.x[0][3]; x[1][0] -= v.x[1][0]; x[1][1] -= v.x[1][1]; x[1][2] -= v.x[1][2]; x[1][3] -= v.x[1][3]; x[2][0] -= v.x[2][0]; x[2][1] -= v.x[2][1]; x[2][2] -= v.x[2][2]; x[2][3] -= v.x[2][3]; x[3][0] -= v.x[3][0]; x[3][1] -= v.x[3][1]; x[3][2] -= v.x[3][2]; x[3][3] -= v.x[3][3]; return *this; } template <class T> const Matrix44<T> & Matrix44<T>::operator -= (T a) { x[0][0] -= a; x[0][1] -= a; x[0][2] -= a; x[0][3] -= a; x[1][0] -= a; x[1][1] -= a; x[1][2] -= a; x[1][3] -= a; x[2][0] -= a; x[2][1] -= a; x[2][2] -= a; x[2][3] -= a; x[3][0] -= a; x[3][1] -= a; x[3][2] -= a; x[3][3] -= a; return *this; } template <class T> Matrix44<T> Matrix44<T>::operator - (const Matrix44<T> &v) const { return Matrix44 (x[0][0] - v.x[0][0], x[0][1] - v.x[0][1], x[0][2] - v.x[0][2], x[0][3] - v.x[0][3], x[1][0] - v.x[1][0], x[1][1] - v.x[1][1], x[1][2] - v.x[1][2], x[1][3] - v.x[1][3], x[2][0] - v.x[2][0], x[2][1] - v.x[2][1], x[2][2] - v.x[2][2], x[2][3] - v.x[2][3], x[3][0] - v.x[3][0], x[3][1] - v.x[3][1], x[3][2] - v.x[3][2], x[3][3] - v.x[3][3]); } template <class T> Matrix44<T> Matrix44<T>::operator - () const { return Matrix44 (-x[0][0], -x[0][1], -x[0][2], -x[0][3], -x[1][0], -x[1][1], -x[1][2], -x[1][3], -x[2][0], -x[2][1], -x[2][2], -x[2][3], -x[3][0], -x[3][1], -x[3][2], -x[3][3]); } template <class T> const Matrix44<T> & Matrix44<T>::negate () { x[0][0] = -x[0][0]; x[0][1] = -x[0][1]; x[0][2] = -x[0][2]; x[0][3] = -x[0][3]; x[1][0] = -x[1][0]; x[1][1] = -x[1][1]; x[1][2] = -x[1][2]; x[1][3] = -x[1][3]; x[2][0] = -x[2][0]; x[2][1] = -x[2][1]; x[2][2] = -x[2][2]; x[2][3] = -x[2][3]; x[3][0] = -x[3][0]; x[3][1] = -x[3][1]; x[3][2] = -x[3][2]; x[3][3] = -x[3][3]; return *this; } template <class T> const Matrix44<T> & Matrix44<T>::operator *= (T a) { x[0][0] *= a; x[0][1] *= a; x[0][2] *= a; x[0][3] *= a; x[1][0] *= a; x[1][1] *= a; x[1][2] *= a; x[1][3] *= a; x[2][0] *= a; x[2][1] *= a; x[2][2] *= a; x[2][3] *= a; x[3][0] *= a; x[3][1] *= a; x[3][2] *= a; x[3][3] *= a; return *this; } template <class T> Matrix44<T> Matrix44<T>::operator * (T a) const { return Matrix44 (x[0][0] * a, x[0][1] * a, x[0][2] * a, x[0][3] * a, x[1][0] * a, x[1][1] * a, x[1][2] * a, x[1][3] * a, x[2][0] * a, x[2][1] * a, x[2][2] * a, x[2][3] * a, x[3][0] * a, x[3][1] * a, x[3][2] * a, x[3][3] * a); } template <class T> inline Matrix44<T> operator * (T a, const Matrix44<T> &v) { return v * a; } template <class T> inline const Matrix44<T> & Matrix44<T>::operator *= (const Matrix44<T> &v) { Matrix44 tmp (T (0)); multiply (*this, v, tmp); *this = tmp; return *this; } template <class T> inline Matrix44<T> Matrix44<T>::operator * (const Matrix44<T> &v) const { Matrix44 tmp (T (0)); multiply (*this, v, tmp); return tmp; } template <class T> void Matrix44<T>::multiply (const Matrix44<T> &a, const Matrix44<T> &b, Matrix44<T> &c) { register const T * IMATH_RESTRICT ap = &a.x[0][0]; register const T * IMATH_RESTRICT bp = &b.x[0][0]; register T * IMATH_RESTRICT cp = &c.x[0][0]; register T a0, a1, a2, a3; a0 = ap[0]; a1 = ap[1]; a2 = ap[2]; a3 = ap[3]; cp[0] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; cp[1] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; cp[2] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; cp[3] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; a0 = ap[4]; a1 = ap[5]; a2 = ap[6]; a3 = ap[7]; cp[4] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; cp[5] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; cp[6] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; cp[7] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; a0 = ap[8]; a1 = ap[9]; a2 = ap[10]; a3 = ap[11]; cp[8] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; cp[9] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; cp[10] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; cp[11] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; a0 = ap[12]; a1 = ap[13]; a2 = ap[14]; a3 = ap[15]; cp[12] = a0 * bp[0] + a1 * bp[4] + a2 * bp[8] + a3 * bp[12]; cp[13] = a0 * bp[1] + a1 * bp[5] + a2 * bp[9] + a3 * bp[13]; cp[14] = a0 * bp[2] + a1 * bp[6] + a2 * bp[10] + a3 * bp[14]; cp[15] = a0 * bp[3] + a1 * bp[7] + a2 * bp[11] + a3 * bp[15]; } template <class T> template <class S> void Matrix44<T>::multVecMatrix(const Vec3<S> &src, Vec3<S> &dst) const { S a, b, c, w; a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0] + x[3][0]; b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1] + x[3][1]; c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2] + x[3][2]; w = src[0] * x[0][3] + src[1] * x[1][3] + src[2] * x[2][3] + x[3][3]; dst.x = a / w; dst.y = b / w; dst.z = c / w; } template <class T> template <class S> void Matrix44<T>::multDirMatrix(const Vec3<S> &src, Vec3<S> &dst) const { S a, b, c; a = src[0] * x[0][0] + src[1] * x[1][0] + src[2] * x[2][0]; b = src[0] * x[0][1] + src[1] * x[1][1] + src[2] * x[2][1]; c = src[0] * x[0][2] + src[1] * x[1][2] + src[2] * x[2][2]; dst.x = a; dst.y = b; dst.z = c; } template <class T> const Matrix44<T> & Matrix44<T>::operator /= (T a) { x[0][0] /= a; x[0][1] /= a; x[0][2] /= a; x[0][3] /= a; x[1][0] /= a; x[1][1] /= a; x[1][2] /= a; x[1][3] /= a; x[2][0] /= a; x[2][1] /= a; x[2][2] /= a; x[2][3] /= a; x[3][0] /= a; x[3][1] /= a; x[3][2] /= a; x[3][3] /= a; return *this; } template <class T> Matrix44<T> Matrix44<T>::operator / (T a) const { return Matrix44 (x[0][0] / a, x[0][1] / a, x[0][2] / a, x[0][3] / a, x[1][0] / a, x[1][1] / a, x[1][2] / a, x[1][3] / a, x[2][0] / a, x[2][1] / a, x[2][2] / a, x[2][3] / a, x[3][0] / a, x[3][1] / a, x[3][2] / a, x[3][3] / a); } template <class T> const Matrix44<T> & Matrix44<T>::transpose () { Matrix44 tmp (x[0][0], x[1][0], x[2][0], x[3][0], x[0][1], x[1][1], x[2][1], x[3][1], x[0][2], x[1][2], x[2][2], x[3][2], x[0][3], x[1][3], x[2][3], x[3][3]); *this = tmp; return *this; } template <class T> Matrix44<T> Matrix44<T>::transposed () const { return Matrix44 (x[0][0], x[1][0], x[2][0], x[3][0], x[0][1], x[1][1], x[2][1], x[3][1], x[0][2], x[1][2], x[2][2], x[3][2], x[0][3], x[1][3], x[2][3], x[3][3]); } template <class T> const Matrix44<T> & Matrix44<T>::gjInvert (bool singExc) throw (IEX_NAMESPACE::MathExc) { *this = gjInverse (singExc); return *this; } template <class T> Matrix44<T> Matrix44<T>::gjInverse (bool singExc) const throw (IEX_NAMESPACE::MathExc) { int i, j, k; Matrix44 s; Matrix44 t (*this); // Forward elimination for (i = 0; i < 3 ; i++) { int pivot = i; T pivotsize = t[i][i]; if (pivotsize < 0) pivotsize = -pivotsize; for (j = i + 1; j < 4; j++) { T tmp = t[j][i]; if (tmp < 0) tmp = -tmp; if (tmp > pivotsize) { pivot = j; pivotsize = tmp; } } if (pivotsize == 0) { if (singExc) throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix."); return Matrix44(); } if (pivot != i) { for (j = 0; j < 4; j++) { T tmp; tmp = t[i][j]; t[i][j] = t[pivot][j]; t[pivot][j] = tmp; tmp = s[i][j]; s[i][j] = s[pivot][j]; s[pivot][j] = tmp; } } for (j = i + 1; j < 4; j++) { T f = t[j][i] / t[i][i]; for (k = 0; k < 4; k++) { t[j][k] -= f * t[i][k]; s[j][k] -= f * s[i][k]; } } } // Backward substitution for (i = 3; i >= 0; --i) { T f; if ((f = t[i][i]) == 0) { if (singExc) throw ::IMATH_INTERNAL_NAMESPACE::SingMatrixExc ("Cannot invert singular matrix."); return Matrix44(); } for (j = 0; j < 4; j++) { t[i][j] /= f; s[i][j] /= f; } for (j = 0; j < i; j++) { f = t[j][i]; for (k = 0; k < 4; k++) { t[j][k] -= f * t[i][k]; s[j][k] -= f * s[i][k]; } } } return s; } template <class T> const Matrix44<T> & Matrix44<T>::invert (bool singExc) throw (IEX_NAMESPACE::MathExc) { *this = inverse (singExc); return *this; } template <class T> Matrix44<T> Matrix44<T>::inverse (bool singExc) const throw (IEX_NAMESPACE::MathExc) { if (x[0][3] != 0 || x[1][3] != 0 || x[2][3] != 0 || x[3][3] != 1) return gjInverse(singExc); Matrix44 s (x[1][1] * x[2][2] - x[2][1] * x[1][2], x[2][1] * x[0][2] - x[0][1] * x[2][2], x[0][1] * x[1][2] - x[1][1] * x[0][2], 0, x[2][0] * x[1][2] - x[1][0] * x[2][2], x[0][0] * x[2][2] - x[2][0] * x[0][2], x[1][0] * x[0][2] - x[0][0] * x[1][2], 0, x[1][0] * x[2][1] - x[2][0] * x[1][1], x[2][0] * x[0][1] - x[0][0] * x[2][1], x[0][0] * x[1][1] - x[1][0] * x[0][1], 0, 0, 0, 0, 1); T r = x[0][0] * s[0][0] + x[0][1] * s[1][0] + x[0][2] * s[2][0]; if (IMATH_INTERNAL_NAMESPACE::abs (r) >= 1) { for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { s[i][j] /= r; } } } else { T mr = IMATH_INTERNAL_NAMESPACE::abs (r) / limits<T>::smallest(); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { if (mr > IMATH_INTERNAL_NAMESPACE::abs (s[i][j])) { s[i][j] /= r; } else { if (singExc) throw SingMatrixExc ("Cannot invert singular matrix."); return Matrix44(); } } } } s[3][0] = -x[3][0] * s[0][0] - x[3][1] * s[1][0] - x[3][2] * s[2][0]; s[3][1] = -x[3][0] * s[0][1] - x[3][1] * s[1][1] - x[3][2] * s[2][1]; s[3][2] = -x[3][0] * s[0][2] - x[3][1] * s[1][2] - x[3][2] * s[2][2]; return s; } template <class T> inline T Matrix44<T>::fastMinor( const int r0, const int r1, const int r2, const int c0, const int c1, const int c2) const { return x[r0][c0] * (x[r1][c1]*x[r2][c2] - x[r1][c2]*x[r2][c1]) + x[r0][c1] * (x[r1][c2]*x[r2][c0] - x[r1][c0]*x[r2][c2]) + x[r0][c2] * (x[r1][c0]*x[r2][c1] - x[r1][c1]*x[r2][c0]); } template <class T> inline T Matrix44<T>::minorOf (const int r, const int c) const { int r0 = 0 + (r < 1 ? 1 : 0); int r1 = 1 + (r < 2 ? 1 : 0); int r2 = 2 + (r < 3 ? 1 : 0); int c0 = 0 + (c < 1 ? 1 : 0); int c1 = 1 + (c < 2 ? 1 : 0); int c2 = 2 + (c < 3 ? 1 : 0); Matrix33<T> working (x[r0][c0],x[r1][c0],x[r2][c0], x[r0][c1],x[r1][c1],x[r2][c1], x[r0][c2],x[r1][c2],x[r2][c2]); return working.determinant(); } template <class T> inline T Matrix44<T>::determinant () const { T sum = (T)0; if (x[0][3] != 0.) sum -= x[0][3] * fastMinor(1,2,3,0,1,2); if (x[1][3] != 0.) sum += x[1][3] * fastMinor(0,2,3,0,1,2); if (x[2][3] != 0.) sum -= x[2][3] * fastMinor(0,1,3,0,1,2); if (x[3][3] != 0.) sum += x[3][3] * fastMinor(0,1,2,0,1,2); return sum; } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::setEulerAngles (const Vec3<S>& r) { S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx; cos_rz = Math<T>::cos (r[2]); cos_ry = Math<T>::cos (r[1]); cos_rx = Math<T>::cos (r[0]); sin_rz = Math<T>::sin (r[2]); sin_ry = Math<T>::sin (r[1]); sin_rx = Math<T>::sin (r[0]); x[0][0] = cos_rz * cos_ry; x[0][1] = sin_rz * cos_ry; x[0][2] = -sin_ry; x[0][3] = 0; x[1][0] = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx; x[1][1] = cos_rz * cos_rx + sin_rz * sin_ry * sin_rx; x[1][2] = cos_ry * sin_rx; x[1][3] = 0; x[2][0] = sin_rz * sin_rx + cos_rz * sin_ry * cos_rx; x[2][1] = -cos_rz * sin_rx + sin_rz * sin_ry * cos_rx; x[2][2] = cos_ry * cos_rx; x[2][3] = 0; x[3][0] = 0; x[3][1] = 0; x[3][2] = 0; x[3][3] = 1; return *this; } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::setAxisAngle (const Vec3<S>& axis, S angle) { Vec3<S> unit (axis.normalized()); S sine = Math<T>::sin (angle); S cosine = Math<T>::cos (angle); x[0][0] = unit[0] * unit[0] * (1 - cosine) + cosine; x[0][1] = unit[0] * unit[1] * (1 - cosine) + unit[2] * sine; x[0][2] = unit[0] * unit[2] * (1 - cosine) - unit[1] * sine; x[0][3] = 0; x[1][0] = unit[0] * unit[1] * (1 - cosine) - unit[2] * sine; x[1][1] = unit[1] * unit[1] * (1 - cosine) + cosine; x[1][2] = unit[1] * unit[2] * (1 - cosine) + unit[0] * sine; x[1][3] = 0; x[2][0] = unit[0] * unit[2] * (1 - cosine) + unit[1] * sine; x[2][1] = unit[1] * unit[2] * (1 - cosine) - unit[0] * sine; x[2][2] = unit[2] * unit[2] * (1 - cosine) + cosine; x[2][3] = 0; x[3][0] = 0; x[3][1] = 0; x[3][2] = 0; x[3][3] = 1; return *this; } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::rotate (const Vec3<S> &r) { S cos_rz, sin_rz, cos_ry, sin_ry, cos_rx, sin_rx; S m00, m01, m02; S m10, m11, m12; S m20, m21, m22; cos_rz = Math<S>::cos (r[2]); cos_ry = Math<S>::cos (r[1]); cos_rx = Math<S>::cos (r[0]); sin_rz = Math<S>::sin (r[2]); sin_ry = Math<S>::sin (r[1]); sin_rx = Math<S>::sin (r[0]); m00 = cos_rz * cos_ry; m01 = sin_rz * cos_ry; m02 = -sin_ry; m10 = -sin_rz * cos_rx + cos_rz * sin_ry * sin_rx; m11 = cos_rz * cos_rx + sin_rz * sin_ry * sin_rx; m12 = cos_ry * sin_rx; m20 = -sin_rz * -sin_rx + cos_rz * sin_ry * cos_rx; m21 = cos_rz * -sin_rx + sin_rz * sin_ry * cos_rx; m22 = cos_ry * cos_rx; Matrix44<T> P (*this); x[0][0] = P[0][0] * m00 + P[1][0] * m01 + P[2][0] * m02; x[0][1] = P[0][1] * m00 + P[1][1] * m01 + P[2][1] * m02; x[0][2] = P[0][2] * m00 + P[1][2] * m01 + P[2][2] * m02; x[0][3] = P[0][3] * m00 + P[1][3] * m01 + P[2][3] * m02; x[1][0] = P[0][0] * m10 + P[1][0] * m11 + P[2][0] * m12; x[1][1] = P[0][1] * m10 + P[1][1] * m11 + P[2][1] * m12; x[1][2] = P[0][2] * m10 + P[1][2] * m11 + P[2][2] * m12; x[1][3] = P[0][3] * m10 + P[1][3] * m11 + P[2][3] * m12; x[2][0] = P[0][0] * m20 + P[1][0] * m21 + P[2][0] * m22; x[2][1] = P[0][1] * m20 + P[1][1] * m21 + P[2][1] * m22; x[2][2] = P[0][2] * m20 + P[1][2] * m21 + P[2][2] * m22; x[2][3] = P[0][3] * m20 + P[1][3] * m21 + P[2][3] * m22; return *this; } template <class T> const Matrix44<T> & Matrix44<T>::setScale (T s) { memset (x, 0, sizeof (x)); x[0][0] = s; x[1][1] = s; x[2][2] = s; x[3][3] = 1; return *this; } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::setScale (const Vec3<S> &s) { memset (x, 0, sizeof (x)); x[0][0] = s[0]; x[1][1] = s[1]; x[2][2] = s[2]; x[3][3] = 1; return *this; } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::scale (const Vec3<S> &s) { x[0][0] *= s[0]; x[0][1] *= s[0]; x[0][2] *= s[0]; x[0][3] *= s[0]; x[1][0] *= s[1]; x[1][1] *= s[1]; x[1][2] *= s[1]; x[1][3] *= s[1]; x[2][0] *= s[2]; x[2][1] *= s[2]; x[2][2] *= s[2]; x[2][3] *= s[2]; return *this; } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::setTranslation (const Vec3<S> &t) { x[0][0] = 1; x[0][1] = 0; x[0][2] = 0; x[0][3] = 0; x[1][0] = 0; x[1][1] = 1; x[1][2] = 0; x[1][3] = 0; x[2][0] = 0; x[2][1] = 0; x[2][2] = 1; x[2][3] = 0; x[3][0] = t[0]; x[3][1] = t[1]; x[3][2] = t[2]; x[3][3] = 1; return *this; } template <class T> inline const Vec3<T> Matrix44<T>::translation () const { return Vec3<T> (x[3][0], x[3][1], x[3][2]); } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::translate (const Vec3<S> &t) { x[3][0] += t[0] * x[0][0] + t[1] * x[1][0] + t[2] * x[2][0]; x[3][1] += t[0] * x[0][1] + t[1] * x[1][1] + t[2] * x[2][1]; x[3][2] += t[0] * x[0][2] + t[1] * x[1][2] + t[2] * x[2][2]; x[3][3] += t[0] * x[0][3] + t[1] * x[1][3] + t[2] * x[2][3]; return *this; } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::setShear (const Vec3<S> &h) { x[0][0] = 1; x[0][1] = 0; x[0][2] = 0; x[0][3] = 0; x[1][0] = h[0]; x[1][1] = 1; x[1][2] = 0; x[1][3] = 0; x[2][0] = h[1]; x[2][1] = h[2]; x[2][2] = 1; x[2][3] = 0; x[3][0] = 0; x[3][1] = 0; x[3][2] = 0; x[3][3] = 1; return *this; } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::setShear (const Shear6<S> &h) { x[0][0] = 1; x[0][1] = h.yx; x[0][2] = h.zx; x[0][3] = 0; x[1][0] = h.xy; x[1][1] = 1; x[1][2] = h.zy; x[1][3] = 0; x[2][0] = h.xz; x[2][1] = h.yz; x[2][2] = 1; x[2][3] = 0; x[3][0] = 0; x[3][1] = 0; x[3][2] = 0; x[3][3] = 1; return *this; } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::shear (const Vec3<S> &h) { // // In this case, we don't need a temp. copy of the matrix // because we never use a value on the RHS after we've // changed it on the LHS. // for (int i=0; i < 4; i++) { x[2][i] += h[1] * x[0][i] + h[2] * x[1][i]; x[1][i] += h[0] * x[0][i]; } return *this; } template <class T> template <class S> const Matrix44<T> & Matrix44<T>::shear (const Shear6<S> &h) { Matrix44<T> P (*this); for (int i=0; i < 4; i++) { x[0][i] = P[0][i] + h.yx * P[1][i] + h.zx * P[2][i]; x[1][i] = h.xy * P[0][i] + P[1][i] + h.zy * P[2][i]; x[2][i] = h.xz * P[0][i] + h.yz * P[1][i] + P[2][i]; } return *this; } //-------------------------------- // Implementation of stream output //-------------------------------- template <class T> std::ostream & operator << (std::ostream &s, const Matrix33<T> &m) { std::ios_base::fmtflags oldFlags = s.flags(); int width; if (s.flags() & std::ios_base::fixed) { s.setf (std::ios_base::showpoint); width = s.precision() + 5; } else { s.setf (std::ios_base::scientific); s.setf (std::ios_base::showpoint); width = s.precision() + 8; } s << "(" << std::setw (width) << m[0][0] << " " << std::setw (width) << m[0][1] << " " << std::setw (width) << m[0][2] << "\n" << " " << std::setw (width) << m[1][0] << " " << std::setw (width) << m[1][1] << " " << std::setw (width) << m[1][2] << "\n" << " " << std::setw (width) << m[2][0] << " " << std::setw (width) << m[2][1] << " " << std::setw (width) << m[2][2] << ")\n"; s.flags (oldFlags); return s; } template <class T> std::ostream & operator << (std::ostream &s, const Matrix44<T> &m) { std::ios_base::fmtflags oldFlags = s.flags(); int width; if (s.flags() & std::ios_base::fixed) { s.setf (std::ios_base::showpoint); width = s.precision() + 5; } else { s.setf (std::ios_base::scientific); s.setf (std::ios_base::showpoint); width = s.precision() + 8; } s << "(" << std::setw (width) << m[0][0] << " " << std::setw (width) << m[0][1] << " " << std::setw (width) << m[0][2] << " " << std::setw (width) << m[0][3] << "\n" << " " << std::setw (width) << m[1][0] << " " << std::setw (width) << m[1][1] << " " << std::setw (width) << m[1][2] << " " << std::setw (width) << m[1][3] << "\n" << " " << std::setw (width) << m[2][0] << " " << std::setw (width) << m[2][1] << " " << std::setw (width) << m[2][2] << " " << std::setw (width) << m[2][3] << "\n" << " " << std::setw (width) << m[3][0] << " " << std::setw (width) << m[3][1] << " " << std::setw (width) << m[3][2] << " " << std::setw (width) << m[3][3] << ")\n"; s.flags (oldFlags); return s; } //--------------------------------------------------------------- // Implementation of vector-times-matrix multiplication operators //--------------------------------------------------------------- template <class S, class T> inline const Vec2<S> & operator *= (Vec2<S> &v, const Matrix33<T> &m) { S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]); S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]); S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]); v.x = x / w; v.y = y / w; return v; } template <class S, class T> inline Vec2<S> operator * (const Vec2<S> &v, const Matrix33<T> &m) { S x = S(v.x * m[0][0] + v.y * m[1][0] + m[2][0]); S y = S(v.x * m[0][1] + v.y * m[1][1] + m[2][1]); S w = S(v.x * m[0][2] + v.y * m[1][2] + m[2][2]); return Vec2<S> (x / w, y / w); } template <class S, class T> inline const Vec3<S> & operator *= (Vec3<S> &v, const Matrix33<T> &m) { S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]); S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]); S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]); v.x = x; v.y = y; v.z = z; return v; } template <class S, class T> inline Vec3<S> operator * (const Vec3<S> &v, const Matrix33<T> &m) { S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]); S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]); S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]); return Vec3<S> (x, y, z); } template <class S, class T> inline const Vec3<S> & operator *= (Vec3<S> &v, const Matrix44<T> &m) { S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]); S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]); S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]); S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]); v.x = x / w; v.y = y / w; v.z = z / w; return v; } template <class S, class T> inline Vec3<S> operator * (const Vec3<S> &v, const Matrix44<T> &m) { S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + m[3][0]); S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + m[3][1]); S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + m[3][2]); S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + m[3][3]); return Vec3<S> (x / w, y / w, z / w); } template <class S, class T> inline const Vec4<S> & operator *= (Vec4<S> &v, const Matrix44<T> &m) { S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]); S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]); S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]); S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]); v.x = x; v.y = y; v.z = z; v.w = w; return v; } template <class S, class T> inline Vec4<S> operator * (const Vec4<S> &v, const Matrix44<T> &m) { S x = S(v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0] + v.w * m[3][0]); S y = S(v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1] + v.w * m[3][1]); S z = S(v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2] + v.w * m[3][2]); S w = S(v.x * m[0][3] + v.y * m[1][3] + v.z * m[2][3] + v.w * m[3][3]); return Vec4<S> (x, y, z, w); } IMATH_INTERNAL_NAMESPACE_HEADER_EXIT #endif // INCLUDED_IMATHMATRIX_H